import streamlit as st | |
from transformers.pipelines import pipeline | |
#from transformers.modeling_auto import AutoModelForQuestionAnswering | |
#from transformers.tokenization_auto import AutoTokenizer | |
# b) Load model & tokenizer | |
#model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
#tokenizer = AutoTokenizer.from_pretrained(model_name) | |
#classifier = pipeline("question-answering", model="deepset/roberta-base-squad2") | |
model_name = "deepset/xlm-roberta-base-squad2" | |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) | |
#QA_input = { | |
# 'question': 'Why is model conversion important?', | |
# 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' | |
#} | |
#res = nlp(QA_input) | |
def main(): | |
st.title("Question & Answering") | |
with st.form("text_field"): | |
sentence_1= st.text_area('Enter question:') | |
sentence_2= st.text_area('Enter context:') | |
QA_input = {'question':sentence_1, 'context':sentence_2} | |
#clicked==True only when the button is clicked | |
clicked = st.form_submit_button("Submit") | |
if clicked: | |
results = nlp(QA_input) | |
st.json(results) | |
if __name__ == "__main__": | |
main() |