MetaLATTE-demo / model.py
yinuozhang's picture
Upload 3 files
f2de080 verified
raw
history blame
11.8 kB
import os
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:4096' # do this before importing pytorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from transformers import EsmModel
import torch
import numpy as np
from lightning.pytorch import seed_everything
from typing import Tuple
import torch
import gc
from torch.optim.lr_scheduler import _LRScheduler
from transformers import EsmModel, PreTrainedModel
from configuration import MetaLATTEConfig
seed_everything(42)
class GELU(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different
(and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
def forward(self, x):
return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1) # x: B, L, H, hidden # x1: B, L, H, hidden // 2
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin):
# Assuming x has shape (B, L, H, HIDDEN_DIM)
# cos and sin have shape (1, L, HIDDEN_DIM)
cos = cos.unsqueeze(2) # (1, L, 1, HIDDEN_DIM)
sin = sin.unsqueeze(2) # (1, L, 1, HIDDEN_DIM)
return (x * cos) + (rotate_half(x) * sin)
class RotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
.. warning: Please note that this embedding is not registered on purpose, as it is transformative
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis
"""
def __init__(self, dim: int, *_, **__):
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x, seq_dimension=1):
seq_len = x.shape[seq_dimension]
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq) # L, 256
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # L, 512
self._cos_cached = emb.cos()[None, :, :] # 1, L, 512
self._sin_cached = emb.sin()[None, :, :] # 1, L, 512
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k)
return (
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), # B, L, H, hidden
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
)
def macro_f1(y_true, y_pred, thresholds):
y_pred_binary = (y_pred >= thresholds).float()
tp = (y_true * y_pred_binary).sum(dim=0)
fp = ((1 - y_true) * y_pred_binary).sum(dim=0)
fn = (y_true * (1 - y_pred_binary)).sum(dim=0)
precision = tp / (tp + fp + 1e-7)
recall = tp / (tp + fn + 1e-7)
f1 = 2 * precision * recall / (precision + recall + 1e-7)
macro_f1 = f1.mean()
return macro_f1
def safeguard_softmax(logits, dim=-1):
# remove max number to prevent exp() to be INF
max_logits, _ = logits.max(dim=dim, keepdim=True)
exp_logits = torch.exp(logits - max_logits)
exp_sum = exp_logits.sum(dim=dim, keepdim=True)
probs = exp_logits / (exp_sum + 1e-7) # Adding a small epsilon to prevent division by zero
return probs
class PositionalAttentionHead(nn.Module):
def __init__(self, hidden_dim, n_heads):
super(PositionalAttentionHead, self).__init__()
self.n_heads = n_heads
self.hidden_dim = hidden_dim
self.head_dim = hidden_dim // n_heads
self.preattn_ln = nn.LayerNorm(self.head_dim)
self.Q = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.K = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.V = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.rot_emb = RotaryEmbedding(self.head_dim)
def forward(self, x, attention_mask):
batch_size, seq_len, _ = x.size() # B, L, H
x = x.view(batch_size, seq_len, self.n_heads, self.head_dim)
x = self.preattn_ln(x)
q = self.Q(x)
k = self.K(x)
v = self.V(x)
q, k = self.rot_emb(q, k)
gc.collect()
torch.cuda.empty_cache()
attn_scores = torch.einsum('bqhd,bkhd->bhqk', q, k) / math.sqrt(self.head_dim)
#print(attention_mask.unsqueeze(1).shape)
#print(attention_mask.unsqueeze(1).unsqueeze(1).shape)
attn_scores = attn_scores.masked_fill(torch.logical_not(attention_mask.unsqueeze(1).unsqueeze(1)), float("-inf")) # B, H, L, L
attn_probs = safeguard_softmax(attn_scores, dim=-1)
x = torch.einsum('bhqk,bkhd->bqhd', attn_probs, v)
x = x.reshape(batch_size, seq_len, self.hidden_dim) # B, L, H
gc.collect()
torch.cuda.empty_cache()
return x, attn_probs
class CosineAnnealingWithWarmup(_LRScheduler):
# Implement based on Llama paper's description
# https://arxiv.org/abs/2302.13971
def __init__(self, optimizer, warmup_steps, total_steps, eta_ratio=0.1, last_epoch=-1):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.eta_ratio = eta_ratio # The ratio of minimum to maximum learning rate
super(CosineAnnealingWithWarmup, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_steps:
return [base_lr * self.last_epoch / self.warmup_steps for base_lr in self.base_lrs]
progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
cosine_decay = 0.5 * (1 + np.cos(np.pi * progress))
decayed_lr = (1 - self.eta_ratio) * cosine_decay + self.eta_ratio
return [decayed_lr * base_lr for base_lr in self.base_lrs]
class RobertaLMHead(nn.Module):
"""Head for masked language modeling."""
def __init__(self, embed_dim, output_dim, weight):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.layer_norm = nn.LayerNorm(embed_dim)
self.weight = weight
self.gelu = GELU()
self.bias = nn.Parameter(torch.zeros(output_dim))
def forward(self, features):
x = self.dense(features)
x = self.gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = F.linear(x, self.weight) + self.bias
return x
class MultitaskProteinModel(PreTrainedModel):
config_class = MetaLATTEConfig
base_model_prefix = "metalatte"
def __init__(self, config):
super().__init__(config)
self.config = config
self.esm_model = EsmModel.from_pretrained(self.config.esm_model_name)
# layer freezing for the original esm model
# first freeze all
for param in self.esm_model.parameters():
param.requires_grad = False
# unfreeze the required layers
for i in range(config.num_layers_to_finetune):
for param in self.esm_model.encoder.layer[-i-1].parameters():
param.requires_grad = True
self.lm_head = RobertaLMHead(embed_dim = 1280, output_dim=33, weight=self.esm_model.embeddings.word_embeddings.weight)
# esm_dim should be 1280
self.attn_head = PositionalAttentionHead(self.config.hidden_size, self.config.num_attention_heads)
self.attn_ln = nn.LayerNorm(self.config.hidden_size)
self.attn_skip = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.linear_layers = nn.ModuleList()
# Add linear layers after the attention head
for _ in range(self.config.num_linear_layers):
self.linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size))
self.reduction_layers = nn.Sequential(
nn.Linear(self.config.hidden_size, self.config.hidden_dim),
GELU(),
nn.Linear(self.config.hidden_dim, self.config.num_labels)
)
self.clf_ln = nn.LayerNorm(self.config.hidden_size)
self.classification_thresholds = nn.Parameter(torch.tensor([0.5]*self.config.num_labels))
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
if config is None:
config = MetaLATTEConfig.from_pretrained(pretrained_model_name_or_path)
model = cls(config)
state_dict = torch.load(f"{pretrained_model_name_or_path}/pytorch_model.bin", map_location=torch.device('cpu'))['state_dict']
model.load_state_dict(state_dict, strict=False)
return model
def forward(self, input_ids, attention_mask=None):
outputs = self.esm_model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
embeddings = outputs.last_hidden_state
attention_masks = attention_mask
x_pool, x_attns = self.attn_head(embeddings, attention_masks)
x_pool = self.attn_ln(x_pool + self.attn_skip(x_pool)) # Added skip connection for the attention layer
for linear_layer in self.linear_layers:
residue = x_pool
x_pool = linear_layer(x_pool) # 1280 -> 1280
x_pool = F.silu(x_pool)
x_pool = x_pool + residue # Skip connection
x_weighted = torch.einsum('bhlk,bld->bhld', x_attns, x_pool) # (B, H, L, 1280)
x_combined = x_weighted.mean(dim=1) # Average over heads: (B, L, 1280)
x_combined = self.clf_ln(x_combined)
mlm_logits = self.lm_head(x_combined)
attention_masks = attention_masks.unsqueeze(-1).float() # (B, L, 1)
attention_sum = attention_masks.sum(dim=1, keepdim=True) # (B, 1, 1)
x_combined_masked = (x_combined * attention_masks).sum(dim=1) / attention_sum.squeeze(1) # (B, 1280)
# Compute classification logits
x_pred = self.reduction_layers(x_combined_masked)
gc.collect()
torch.cuda.empty_cache()
return x_pred, x_attns, x_combined_masked, mlm_logits
def predict(self, input_ids, attention_mask=None):
x_pred, _, _, _ = self.forward(input_ids, attention_mask)
classification_output = torch.sigmoid(x_pred)
predictions = (classification_output >= self.classification_thresholds).float()
for i, pred in enumerate(predictions):
if pred.sum() == 0:
weighted_probs = classification_output[i]
max_class = torch.argmax(weighted_probs)
predictions[i, max_class] = 1.0
return classification_output, predictions