Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load a pre-trained sentiment-analysis model | |
classifier = pipeline("sentiment-analysis", model="ChavinloSocialRise/bot_rejection_model") | |
# Define a function to classify the input text | |
def classify_text(text): | |
result = classifier(text)[0] # Get the first result | |
label = result['label'] # The label (e.g., POSITIVE, NEGATIVE) | |
score = result['score'] # The confidence score | |
return f"Label: {label}, Confidence: {score:.4f}" | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=classify_text, # Function to call | |
inputs="text", # Input: a text box | |
outputs="text", # Output: text | |
title="Text Classifier", | |
description="Enter some text and see the classification result." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |