ChenDY commited on
Commit
f31a574
1 Parent(s): 6e35e58

NitroFusion demo

Browse files
Files changed (1) hide show
  1. app.py +95 -143
app.py CHANGED
@@ -1,154 +1,106 @@
 
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
 
 
 
 
 
 
 
 
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
 
 
 
 
 
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
1
+ import copy
2
+ import spaces
3
  import gradio as gr
 
 
 
 
 
4
  import torch
5
+ from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderKL
6
+ from safetensors.torch import load_file
7
+ from huggingface_hub import hf_hub_download
8
+
9
+
10
+ class TimestepShiftLCMScheduler(LCMScheduler):
11
+ def __init__(self, *args, shifted_timestep=250, **kwargs):
12
+ super().__init__(*args, **kwargs)
13
+ self.register_to_config(shifted_timestep=shifted_timestep)
14
+
15
+ def set_timesteps(self, *args, **kwargs):
16
+ super().set_timesteps(*args, **kwargs)
17
+ self.origin_timesteps = self.timesteps.clone()
18
+ self.shifted_timesteps = (self.timesteps * self.config.shifted_timestep / self.config.num_train_timesteps).long()
19
+ self.timesteps = self.shifted_timesteps
20
+
21
+ def step(self, model_output, timestep, sample, generator=None, return_dict=True):
22
+ if self.step_index is None:
23
+ self._init_step_index(timestep)
24
+ self.timesteps = self.origin_timesteps
25
+ output = super().step(model_output, timestep, sample, generator, return_dict)
26
+ self.timesteps = self.shifted_timesteps
27
+ return output
28
+
29
+
30
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
31
+
32
+ base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
33
+ pipe = DiffusionPipeline.from_pretrained(
34
+ base_model_id,
35
+ vae=vae,
36
+ torch_dtype=torch.float16,
37
+ variant="fp16",
38
+ ).to("cuda")
39
+
40
+ repo = "ChenDY/NitroFusion"
41
+
42
+ unet_realism = pipe.unet
43
+ unet_realism.load_state_dict(load_file(hf_hub_download(repo, "nitrosd-realism_unet.safetensors"), device="cuda"))
44
+ scheduler_realism = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=250)
45
+ scheduler_realism.config.original_inference_steps = 4
46
+
47
+ unet_vibrant = copy.deepcopy(pipe.unet)
48
+ unet_vibrant.load_state_dict(load_file(hf_hub_download(repo, "nitrosd-vibrant_unet.safetensors"), device="cuda"))
49
+ scheduler_vibrant = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=500)
50
+ scheduler_vibrant.config.original_inference_steps = 4
51
+
52
+
53
+ @spaces.GPU
54
+ def process_image(model_choice, num_images, height, width, prompt, seed):
55
+ global pipe
56
+ # Switch to the selected model
57
+ if model_choice == "NitroSD-Realism":
58
+ pipe.unet = unet_realism
59
+ pipe.scheduler = scheduler_realism
60
+ elif model_choice == "NitroSD-Vibrant":
61
+ pipe.unet = unet_vibrant
62
+ pipe.scheduler = scheduler_vibrant
63
+ else:
64
+ raise ValueError("Invalid model choice.")
65
+ # Generate the image
66
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
67
+ return pipe(
68
+ prompt=[prompt] * num_images,
69
+ generator=torch.manual_seed(int(seed)),
70
+ num_inference_steps=1,
71
+ guidance_scale=0.0,
72
+ height=int(height),
73
+ width=int(width),
74
+ ).images
75
+
76
+
77
+ # Gradio UI
78
+ with gr.Blocks() as demo:
79
+ with gr.Column():
80
  with gr.Row():
81
+ with gr.Column():
82
+ model_choice = gr.Dropdown(
83
+ label="Choose Model",
84
+ choices=["NitroSD-Realism", "NitroSD-Vibrant"],
85
+ value="NitroSD-Realism",
86
+ interactive=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  )
88
+ num_images = gr.Slider(
89
+ label="Number of Images", minimum=1, maximum=4, step=1, value=4, interactive=True
 
 
 
 
 
90
  )
91
+ height = gr.Slider(
92
+ label="Image Height", minimum=768, maximum=1024, step=8, value=1024, interactive=True
 
 
 
 
 
 
93
  )
94
+ width = gr.Slider(
95
+ label="Image Width", minimum=768, maximum=1024, step=8, value=1024, interactive=True
 
 
 
 
 
96
  )
97
+ prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
98
+ seed = gr.Number(label="Seed", value=2024, interactive=True)
99
+ btn = gr.Button(value="Generate Image")
100
+ with gr.Column():
101
+ output = gr.Gallery(height=1024)
102
 
103
+ btn.click(process_image, inputs=[model_choice, num_images, height, width, prompt, seed], outputs=[output])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  if __name__ == "__main__":
106
  demo.launch()