Spaces:
Running
on
Zero
Running
on
Zero
NitroFusion demo
Browse files
app.py
CHANGED
@@ -1,154 +1,106 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
)
|
118 |
-
|
119 |
-
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|
|
|
1 |
+
import copy
|
2 |
+
import spaces
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderKL
|
6 |
+
from safetensors.torch import load_file
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
|
10 |
+
class TimestepShiftLCMScheduler(LCMScheduler):
|
11 |
+
def __init__(self, *args, shifted_timestep=250, **kwargs):
|
12 |
+
super().__init__(*args, **kwargs)
|
13 |
+
self.register_to_config(shifted_timestep=shifted_timestep)
|
14 |
+
|
15 |
+
def set_timesteps(self, *args, **kwargs):
|
16 |
+
super().set_timesteps(*args, **kwargs)
|
17 |
+
self.origin_timesteps = self.timesteps.clone()
|
18 |
+
self.shifted_timesteps = (self.timesteps * self.config.shifted_timestep / self.config.num_train_timesteps).long()
|
19 |
+
self.timesteps = self.shifted_timesteps
|
20 |
+
|
21 |
+
def step(self, model_output, timestep, sample, generator=None, return_dict=True):
|
22 |
+
if self.step_index is None:
|
23 |
+
self._init_step_index(timestep)
|
24 |
+
self.timesteps = self.origin_timesteps
|
25 |
+
output = super().step(model_output, timestep, sample, generator, return_dict)
|
26 |
+
self.timesteps = self.shifted_timesteps
|
27 |
+
return output
|
28 |
+
|
29 |
+
|
30 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
31 |
+
|
32 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
33 |
+
pipe = DiffusionPipeline.from_pretrained(
|
34 |
+
base_model_id,
|
35 |
+
vae=vae,
|
36 |
+
torch_dtype=torch.float16,
|
37 |
+
variant="fp16",
|
38 |
+
).to("cuda")
|
39 |
+
|
40 |
+
repo = "ChenDY/NitroFusion"
|
41 |
+
|
42 |
+
unet_realism = pipe.unet
|
43 |
+
unet_realism.load_state_dict(load_file(hf_hub_download(repo, "nitrosd-realism_unet.safetensors"), device="cuda"))
|
44 |
+
scheduler_realism = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=250)
|
45 |
+
scheduler_realism.config.original_inference_steps = 4
|
46 |
+
|
47 |
+
unet_vibrant = copy.deepcopy(pipe.unet)
|
48 |
+
unet_vibrant.load_state_dict(load_file(hf_hub_download(repo, "nitrosd-vibrant_unet.safetensors"), device="cuda"))
|
49 |
+
scheduler_vibrant = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=500)
|
50 |
+
scheduler_vibrant.config.original_inference_steps = 4
|
51 |
+
|
52 |
+
|
53 |
+
@spaces.GPU
|
54 |
+
def process_image(model_choice, num_images, height, width, prompt, seed):
|
55 |
+
global pipe
|
56 |
+
# Switch to the selected model
|
57 |
+
if model_choice == "NitroSD-Realism":
|
58 |
+
pipe.unet = unet_realism
|
59 |
+
pipe.scheduler = scheduler_realism
|
60 |
+
elif model_choice == "NitroSD-Vibrant":
|
61 |
+
pipe.unet = unet_vibrant
|
62 |
+
pipe.scheduler = scheduler_vibrant
|
63 |
+
else:
|
64 |
+
raise ValueError("Invalid model choice.")
|
65 |
+
# Generate the image
|
66 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
|
67 |
+
return pipe(
|
68 |
+
prompt=[prompt] * num_images,
|
69 |
+
generator=torch.manual_seed(int(seed)),
|
70 |
+
num_inference_steps=1,
|
71 |
+
guidance_scale=0.0,
|
72 |
+
height=int(height),
|
73 |
+
width=int(width),
|
74 |
+
).images
|
75 |
+
|
76 |
+
|
77 |
+
# Gradio UI
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
with gr.Column():
|
80 |
with gr.Row():
|
81 |
+
with gr.Column():
|
82 |
+
model_choice = gr.Dropdown(
|
83 |
+
label="Choose Model",
|
84 |
+
choices=["NitroSD-Realism", "NitroSD-Vibrant"],
|
85 |
+
value="NitroSD-Realism",
|
86 |
+
interactive=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
+
num_images = gr.Slider(
|
89 |
+
label="Number of Images", minimum=1, maximum=4, step=1, value=4, interactive=True
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
+
height = gr.Slider(
|
92 |
+
label="Image Height", minimum=768, maximum=1024, step=8, value=1024, interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
+
width = gr.Slider(
|
95 |
+
label="Image Width", minimum=768, maximum=1024, step=8, value=1024, interactive=True
|
|
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
+
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
|
98 |
+
seed = gr.Number(label="Seed", value=2024, interactive=True)
|
99 |
+
btn = gr.Button(value="Generate Image")
|
100 |
+
with gr.Column():
|
101 |
+
output = gr.Gallery(height=1024)
|
102 |
|
103 |
+
btn.click(process_image, inputs=[model_choice, num_images, height, width, prompt, seed], outputs=[output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
demo.launch()
|