FreeU / free_lunch_utils.py
ChenyangSi's picture
Upload 3 files
713ec7d
raw
history blame
13.3 kB
import torch
import torch.fft as fft
from diffusers.models.unet_2d_condition import logger
from diffusers.utils import is_torch_version
from typing import Any, Dict, List, Optional, Tuple, Union
def isinstance_str(x: object, cls_name: str):
"""
Checks whether x has any class *named* cls_name in its ancestry.
Doesn't require access to the class's implementation.
Useful for patching!
"""
for _cls in x.__class__.__mro__:
if _cls.__name__ == cls_name:
return True
return False
def Fourier_filter(x, threshold, scale):
dtype = x.dtype
x = x.type(torch.float32)
# FFT
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W)).cuda()
crow, ccol = H // 2, W //2
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
x_freq = x_freq * mask
# IFFT
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
x_filtered = x_filtered.type(dtype)
return x_filtered
def register_upblock2d(model):
def up_forward(self):
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
#print(f"in upblock2d, hidden states shape: {hidden_states.shape}")
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "UpBlock2D"):
upsample_block.forward = up_forward(upsample_block)
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
def up_forward(self):
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
#print(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
# --------------- FreeU code -----------------------
# Only operate on the first two stages
if hidden_states.shape[1] == 1280:
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
if hidden_states.shape[1] == 640:
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
# ---------------------------------------------------------
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "UpBlock2D"):
upsample_block.forward = up_forward(upsample_block)
setattr(upsample_block, 'b1', b1)
setattr(upsample_block, 'b2', b2)
setattr(upsample_block, 's1', s1)
setattr(upsample_block, 's2', s2)
def register_crossattn_upblock2d(model):
def up_forward(self):
def forward(
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
#print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn, return_dict=False),
hidden_states,
encoder_hidden_states,
None, # timestep
None, # class_labels
cross_attention_kwargs,
attention_mask,
encoder_attention_mask,
**ckpt_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
upsample_block.forward = up_forward(upsample_block)
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
def up_forward(self):
def forward(
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
#print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# --------------- FreeU code -----------------------
# Only operate on the first two stages
if hidden_states.shape[1] == 1280:
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
if hidden_states.shape[1] == 640:
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
# ---------------------------------------------------------
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn, return_dict=False),
hidden_states,
encoder_hidden_states,
None, # timestep
None, # class_labels
cross_attention_kwargs,
attention_mask,
encoder_attention_mask,
**ckpt_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
# hidden_states = attn(
# hidden_states,
# encoder_hidden_states=encoder_hidden_states,
# cross_attention_kwargs=cross_attention_kwargs,
# encoder_attention_mask=encoder_attention_mask,
# return_dict=False,
# )[0]
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
upsample_block.forward = up_forward(upsample_block)
setattr(upsample_block, 'b1', b1)
setattr(upsample_block, 'b2', b2)
setattr(upsample_block, 's1', s1)
setattr(upsample_block, 's2', s2)