Spaces:
Running
Running
import logging | |
import json | |
import time | |
import io | |
import os | |
import re | |
import requests | |
import textwrap | |
import random | |
import hashlib | |
from datetime import datetime | |
from PIL import Image, ImageDraw, ImageFilter, ImageFont | |
import anthropic_bedrock | |
import gradio as gr | |
from opencc import OpenCC | |
from openai import OpenAI | |
from anthropic_bedrock import AnthropicBedrock, HUMAN_PROMPT, AI_PROMPT | |
from google.auth.transport.requests import Request | |
from google.oauth2.service_account import Credentials | |
from google import auth | |
from google.cloud import bigquery | |
from google.cloud import storage | |
SERVICE_ACCOUNT_INFO = os.getenv("GBQ_TOKEN") | |
SCOPES = ["https://www.googleapis.com/auth/cloud-platform"] | |
service_account_info_dict = json.loads(SERVICE_ACCOUNT_INFO) | |
creds = Credentials.from_service_account_info(service_account_info_dict, scopes=SCOPES) | |
gbq_client = bigquery.Client( | |
credentials=creds, project=service_account_info_dict["project_id"] | |
) | |
gcs_client = storage.Client( | |
credentials=creds, project=service_account_info_dict["project_id"] | |
) | |
class CompletionReward: | |
def __init__(self): | |
self.player_backend_user_id = None | |
self.player_name = None | |
self.background_url = None | |
self.player_selected_character = None | |
self.player_selected_model = None | |
self.player_selected_paragraph = None | |
self.paragraph_openai = None | |
self.paragraph_aws = None | |
self.paragraph_google = None | |
self.paragraph_mtk = None | |
self.paragraph_ntu = None | |
self.player_certificate_url = None | |
self.openai_agent = OpenAIAgent() | |
self.aws_agent = AWSAgent() | |
self.google_agent = GoogleAgent() | |
self.mtk_agent = MTKAgent() | |
self.ntu_agent = NTUAgent() | |
self.agents_responses = {} | |
self.agent_list = [ | |
self.openai_agent, | |
self.aws_agent, | |
self.google_agent, | |
self.mtk_agent, | |
self.ntu_agent, | |
] | |
self.shuffled_response_order = {} | |
self.pop_response_order = [] | |
self.response_time_map = {} | |
def get_llm_response_once(self, player_logs): | |
if self.agent_list: | |
# Randomly select and remove an agent from the list | |
agent = self.agent_list.pop(random.randint(0, len(self.agent_list) - 1)) | |
else: | |
return "No agents left", None | |
story, response_time = agent.get_story(player_logs) | |
self.agents_responses[agent.name] = story | |
self.pop_response_order.append(agent.name) | |
self.response_time_map[agent.name] = response_time | |
if len(self.pop_response_order) == 5: | |
self.shuffled_response_order = { | |
str(index): agent for index, agent in enumerate(self.pop_response_order) | |
} | |
self.paragraph_openai = self.agents_responses["openai"] | |
self.paragraph_aws = self.agents_responses["aws"] | |
self.paragraph_google = self.agents_responses["google"] | |
self.paragraph_mtk = self.agents_responses["mtk"] | |
self.paragraph_ntu = self.agents_responses["ntu"] | |
return [(None, story)] | |
def set_player_name(self, player_name, player_backend_user_id): | |
self.player_backend_user_id = player_backend_user_id | |
self.player_name = player_name | |
def set_background_url(self, background_url): | |
self.background_url = background_url | |
def set_player_backend_user_id(self, player_backend_user_id): | |
self.player_backend_user_id = player_backend_user_id | |
def set_player_selected_character(self, player_selected_character): | |
character_map = { | |
"露米娜": "0", | |
"索拉拉": "1", | |
"薇丹特": "2", | |
"蔚藍": "3", | |
"紅寶石": "4", | |
} | |
self.player_selected_character = player_selected_character | |
self.player_selected_model = self.shuffled_response_order[ | |
character_map[player_selected_character] | |
] | |
self.player_selected_paragraph = self.get_paragraph_by_model( | |
self.player_selected_model | |
) | |
def get_paragraph_by_model(self, model): | |
return getattr(self, f"paragraph_{model}", None) | |
def create_certificate(self): | |
image_url = self.openai_agent.get_background() | |
self.set_background_url(image_url) | |
source_file = ImageProcessor.generate_reward( | |
image_url, | |
self.player_name, | |
self.player_selected_paragraph, | |
self.player_backend_user_id, | |
) | |
public_url = self.upload_blob_and_get_public_url( | |
"mes_completion_rewards", source_file, f"2023_mes/{source_file}" | |
) | |
self.player_certificate_url = public_url | |
return gr.Image(public_url, visible=True, elem_id="certificate") | |
def to_dict(self): | |
return { | |
"player_backend_user_id": self.player_backend_user_id, | |
"player_name": self.player_name, | |
"background_url": self.background_url, | |
"player_selected_model": self.player_selected_model, | |
"player_selected_paragraph": self.player_selected_paragraph, | |
"paragraph_openai": self.paragraph_openai, | |
"paragraph_aws": self.paragraph_aws, | |
"paragraph_google": self.paragraph_google, | |
"paragraph_mtk": self.paragraph_mtk, | |
"paragraph_ntu": self.paragraph_ntu, | |
"response_time_openai": self.response_time_map["openai"], | |
"response_time_aws": self.response_time_map["aws"], | |
"response_time_google": self.response_time_map["google"], | |
"response_time_mtk": self.response_time_map["mtk"], | |
"response_time_ntu": self.response_time_map["ntu"], | |
"player_certificate_url": self.player_certificate_url, | |
"created_at": datetime.now(), | |
} | |
def insert_data_into_bigquery(self, client, dataset_id, table_id, rows_to_insert): | |
table_ref = client.dataset(dataset_id).table(table_id) | |
table = client.get_table(table_ref) | |
errors = client.insert_rows(table, rows_to_insert) | |
if errors: | |
logging.info("Errors occurred while inserting rows:") | |
for error in errors: | |
print(error) | |
else: | |
logging.info(f"Inserted {len(rows_to_insert)} rows successfully.") | |
def complete_reward( | |
self, | |
): | |
insert_row = self.to_dict() | |
self.insert_data_into_bigquery( | |
gbq_client, "streaming_log", "log_mes_completion_rewards", [insert_row] | |
) | |
logging.info( | |
f"Player {insert_row['player_backend_user_id']} rendered successfully." | |
) | |
with open("./data/completion_reward_issue_status.json") as f: | |
completion_reward_issue_status_dict = json.load(f) | |
completion_reward_issue_status_dict[ | |
insert_row["player_backend_user_id"] | |
] = self.player_certificate_url | |
with open("./data/completion_reward_issue_status.json", "w") as f: | |
json.dump(completion_reward_issue_status_dict, f) | |
def upload_blob_and_get_public_url( | |
self, bucket_name, source_file_name, destination_blob_name | |
): | |
"""Uploads a file to the bucket and makes it publicly accessible.""" | |
# Initialize a storage client | |
bucket = gcs_client.bucket(bucket_name) | |
blob = bucket.blob(destination_blob_name) | |
# Upload the file | |
blob.upload_from_filename(source_file_name) | |
# The public URL can be used to directly access the uploaded file via HTTP | |
public_url = blob.public_url | |
logging.info(f"File {source_file_name} uploaded to {destination_blob_name}.") | |
return public_url | |
class OpenAIAgent: | |
def __init__(self): | |
self.name = "openai" | |
self.temperature = 0.8 | |
self.frequency_penalty = 0 | |
self.presence_penalty = 0 | |
self.max_tokens = 2048 | |
def get_story(self, user_log): | |
system_prompt = """ | |
我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請 | |
- 以「你」稱呼學生 | |
- 可以裁減內容以將內容限制在 500 字內 | |
- 試著合併故事記錄成一段連貫、有吸引力的故事 | |
- 請勿突然中斷故事,請讓故事有一個完整的結局 | |
- 請使用 zh_TW | |
- 請直接回覆故事內容,不需要回覆任何訊息 | |
""" | |
user_log = f""" | |
```{user_log} | |
``` | |
""" | |
messages = [ | |
{ | |
"role": "system", | |
"content": f"{system_prompt}", | |
}, | |
{ | |
"role": "user", | |
"content": f"{user_log}", | |
}, | |
] | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
response = None | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
start_time = time.time() | |
try: | |
response = client.chat.completions.create( | |
model="gpt-4-1106-preview", | |
messages=messages, | |
temperature=self.temperature, | |
max_tokens=self.max_tokens, | |
frequency_penalty=self.frequency_penalty, | |
presence_penalty=self.presence_penalty, | |
) | |
chinese_converter = OpenCC("s2tw") | |
self.openai_response_time = time.time() - start_time | |
return chinese_converter.convert(response.choices[0].message.content), self.openai_response_time | |
except Exception as e: | |
retry_attempts += 1 | |
logging.error(f"OpenAI Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) | |
self.openai_response_time = time.time() - start_time | |
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。', self.openai_response_time | |
def get_background(self): | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
image_url = None | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
try: | |
logging.info("Generating image...") | |
response = client.images.generate( | |
model="dall-e-3", | |
prompt="Create an image in a retro Ghibli style, with a focus on a universe theme. The artwork should maintain the traditional hand-drawn animation look characteristic of Ghibli and with vibrant color. Imagine a scene set in outer space or a fantastical cosmic environment, rich with vibrant and varied color palettes to capture the mystery and majesty of the universe. The background should be detailed, showcasing stars, planets, and nebulae, blending the Ghibli style's nostalgia and emotional depth with the awe-inspiring aspects of space. The overall feel should be timeless, merging the natural wonder of the cosmos with the storytelling and emotional resonance typical of the retro Ghibli aesthetic. Soft lighting and gentle shading should be used to enhance the dreamlike, otherworldly quality of the scene.", | |
size="1024x1024", | |
quality="standard", | |
n=1, | |
) | |
image_url = response.data[0].url | |
return image_url | |
except Exception as e: | |
retry_attempts += 1 | |
logging.error(f"DALLE Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) # exponential backoff | |
class AWSAgent: | |
def __init__(self): | |
self.name = "aws" | |
def get_story(self, user_log): | |
system_prompt = """ | |
我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請 | |
- 以「你」稱呼學生 | |
- 可以裁減內容以將內容限制在 500 字內 | |
- 試著合併故事記錄成一段連貫、有吸引力的故事 | |
- 請勿突然中斷故事,請讓故事有一個完整的結局 | |
- 請使用 zh_TW | |
- 請直接回覆故事內容,不需要回覆任何訊息 | |
""" | |
user_log = f""" | |
```{user_log} | |
``` | |
""" | |
client = AnthropicBedrock( | |
aws_access_key=os.getenv("AWS_ACCESS_KEY"), | |
aws_secret_key=os.getenv("AWS_SECRET_KEY"), | |
aws_region="us-west-2", | |
) | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
try: | |
start_time = time.time() | |
completion = client.completions.create( | |
model="anthropic.claude-v2", | |
max_tokens_to_sample=2048, | |
prompt=f"{anthropic_bedrock.HUMAN_PROMPT}{system_prompt},以下是我的故事紀錄```{user_log}``` {anthropic_bedrock.AI_PROMPT}", | |
) | |
chinese_converter = OpenCC("s2tw") | |
self.aws_response_time = time.time() - start_time | |
return chinese_converter.convert(completion.completion), self.aws_response_time | |
except Exception as e: | |
retry_attempts += 1 | |
logging.error(f"AWS Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) | |
self.aws_response_time = time.time() - start_time | |
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。', self.aws_response_time | |
class GoogleAgent: | |
from google.cloud import aiplatform | |
from vertexai.preview.generative_models import GenerativeModel | |
SERVICE_ACCOUNT_INFO = os.getenv("GBQ_TOKEN") | |
service_account_info_dict = json.loads(SERVICE_ACCOUNT_INFO) | |
SCOPES = ["https://www.googleapis.com/auth/cloud-platform"] | |
creds = Credentials.from_service_account_info( | |
service_account_info_dict, scopes=SCOPES | |
) | |
aiplatform.init( | |
project="junyiacademy", | |
service_account=service_account_info_dict, | |
credentials=creds, | |
) | |
gemini_pro_model = GenerativeModel("gemini-pro") | |
def __init__(self): | |
self.name = "google" | |
def get_story(self, user_log): | |
system_prompt = """ | |
我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請 | |
- 以「你」稱呼學生 | |
- 可以裁減內容以將內容限制在 500 字內 | |
- 試著合併故事記錄成一段連貫、有吸引力的故事 | |
- 請勿突然中斷故事,請讓故事有一個完整的結局 | |
- 請使用 zh_TW | |
- 請直接回覆故事內容,不需要回覆任何訊息 | |
""" | |
user_log = f""" | |
```{user_log} | |
``` | |
""" | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
try: | |
start_time = time.time() | |
logging.info("Google Generating response...") | |
model_response = self.gemini_pro_model.generate_content( | |
f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```" | |
) | |
chinese_converter = OpenCC("s2tw") | |
self.google_response_time = time.time() - start_time | |
return chinese_converter.convert( | |
model_response.candidates[0].content.parts[0].text | |
), self.google_response_time | |
except Exception as e: | |
retry_attempts += 1 | |
logging.error(f"Google Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) | |
self.google_response_time = time.time() - start_time | |
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。', self.google_response_time | |
class MTKAgent: | |
def __init__(self): | |
self.name = "mtk" | |
def get_story(self, user_log): | |
system_prompt = """ | |
我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請 | |
- 以「你」稱呼學生 | |
- 可以裁減內容以將內容限制在 500 字內 | |
- 試著合併故事記錄成一段連貫、有吸引力的故事 | |
- 請勿突然中斷故事,請讓故事有一個完整的結局 | |
- 請使用 zh_TW | |
- 請直接回覆故事內容,不需要回覆任何訊息 | |
""" | |
user_log = f""" | |
```{user_log} | |
``` | |
""" | |
BASE_URL = "http://35.229.245.251:8008/v1" | |
TOKEN = os.getenv("MTK_TOKEN") | |
MODEL_NAME = "model7-c-chat" | |
TEMPERATURE = 1 | |
MAX_TOKENS = 1024 | |
TOP_P = 0 | |
PRESENCE_PENALTY = 0 | |
FREQUENCY_PENALTY = 0 | |
message = f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```" | |
url = os.path.join(BASE_URL, "chat/completions") | |
headers = { | |
"accept": "application/json", | |
"Authorization": f"Bearer {TOKEN}", | |
"Content-Type": "application/json", | |
} | |
data = { | |
"model": MODEL_NAME, | |
"messages": str(message), | |
"temperature": TEMPERATURE, | |
"n": 1, | |
"max_tokens": MAX_TOKENS, | |
"stop": "", | |
"top_p": TOP_P, | |
"logprobs": 0, | |
"echo": False, | |
"presence_penalty": PRESENCE_PENALTY, | |
"frequency_penalty": FREQUENCY_PENALTY, | |
} | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
try: | |
start_time = time.time() | |
response = requests.post( | |
url, headers=headers, data=json.dumps(data) | |
).json() | |
response_text = response["choices"][0]["message"]["content"] | |
matched_contents = re.findall("```(.*?)```", response_text, re.DOTALL) | |
# Concatenate all extracted contents | |
extracted_content = "\n".join(matched_contents).strip() | |
chinese_converter = OpenCC("s2tw") | |
self.mtk_response_time = time.time() - start_time | |
if extracted_content: | |
return chinese_converter.convert(extracted_content), self.mtk_response_time | |
else: | |
return chinese_converter.convert(response_text), self.mtk_response_time | |
except Exception as e: | |
retry_attempts += 1 | |
logging.error(f"MTK Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) | |
self.mtk_response_time = time.time() - start_time | |
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。', self.mtk_response_time | |
class NTUAgent: | |
def __init__(self): | |
self.name = "ntu" | |
def get_story(self, user_log): | |
system_prompt = """ | |
我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請 | |
- 以「你」稱呼學生 | |
- 可以裁減內容以將內容限制在 500 字內 | |
- 試著合併故事記錄成一段連貫、有吸引力的故事 | |
- 請勿突然中斷故事,請讓故事有一個完整的結局 | |
- 請使用 zh_TW | |
- 請直接回覆故事內容,不需要回覆任何訊息 | |
""" | |
user_log = f""" | |
```{user_log} | |
``` | |
""" | |
messages = [ | |
{ | |
"role": "system", | |
"content": f"{system_prompt}", | |
}, | |
{ | |
"role": "user", | |
"content": f"{user_log}", | |
}, | |
] | |
url = 'http://api.twllm.com:20002/v1/chat/completions' | |
data = { | |
"model": "yentinglin/Taiwan-LLM-13B-v2.0-chat", | |
"messages": messages, | |
"temperature": 0.7, | |
"top_p": 1, | |
"n": 1, | |
"max_tokens": 2048, | |
"stop": ["string"], | |
"stream": False, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
"user": "string", | |
"best_of": 1, | |
"top_k": -1, | |
"ignore_eos": False, | |
"use_beam_search": False, | |
"stop_token_ids": [0], | |
"skip_special_tokens": True, | |
"spaces_between_special_tokens": True, | |
"add_generation_prompt": True, | |
"echo": False, | |
"repetition_penalty": 1, | |
"min_p": 0 | |
} | |
headers = { | |
'accept': 'application/json', | |
'Content-Type': 'application/json' | |
} | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
try: | |
start_time = time.time() | |
response = requests.post(url, headers=headers, data=json.dumps(data)).json() | |
response_text = response["choices"][0]["message"]["content"] | |
matched_contents = re.findall("```(.*?)```", response_text, re.DOTALL) | |
# Concatenate all extracted contents | |
extracted_content = "\n".join(matched_contents).strip() | |
chinese_converter = OpenCC("s2tw") | |
self.ntu_response_time = time.time() - start_time | |
logging.warning(f"NTU response time: {self.ntu_response_time}") | |
if extracted_content: | |
return chinese_converter.convert(extracted_content), self.ntu_response_time | |
else: | |
return chinese_converter.convert(response_text), self.ntu_response_time | |
except Exception as e: | |
retry_attempts += 1 | |
logging.error(f"NTU Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) | |
self.ntu_response_time = time.time() - start_time | |
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。', self.ntu_response_time | |
class ImageProcessor: | |
def draw_shadow( | |
image, box, radius, offset=(10, 10), shadow_color=(0, 0, 0, 128), blur_radius=5 | |
): | |
shadow_image = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
shadow_draw = ImageDraw.Draw(shadow_image) | |
shadow_box = [ | |
box[0] + offset[0], | |
box[1] + offset[1], | |
box[2] + offset[0], | |
box[3] + offset[1], | |
] | |
shadow_draw.rounded_rectangle(shadow_box, fill=shadow_color, radius=radius) | |
shadow_image = shadow_image.filter(ImageFilter.GaussianBlur(blur_radius)) | |
image.paste(shadow_image, (0, 0), shadow_image) | |
def generate_reward(url, player_name, paragraph, player_backend_user_id): | |
retry_attempts = 0 | |
while retry_attempts < 5: | |
try: | |
response = requests.get(url) | |
break | |
except requests.RequestException as e: | |
retry_attempts += 1 | |
logging.error(f"Attempt {retry_attempts}: {e}") | |
time.sleep(1 * retry_attempts) # exponential backoff | |
image_bytes = io.BytesIO(response.content) | |
img = Image.open(image_bytes) | |
tmp_img = Image.new("RGBA", img.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(tmp_img) | |
# Draw the text | |
title_font = ImageFont.truetype("NotoSansTC-Bold.ttf", 34) | |
body_font = ImageFont.truetype("NotoSansTC-Light.ttf", 14) | |
# Calculate space required by the paragraph | |
paragraph_height = 0 | |
for line in paragraph.split("\n"): | |
wrapped_lines = textwrap.wrap(line, width=63) | |
for wrapped_line in wrapped_lines: | |
_, _, _, line_height = draw.textbbox( | |
(0, 0), wrapped_line, font=body_font | |
) | |
paragraph_height += line_height + 10 | |
# Draw the box | |
padding = 40 | |
left, right = 50, img.width - 50 | |
box_height = min(800, paragraph_height + padding) | |
top = (img.height - box_height) // 2 | |
bottom = (img.height + box_height) // 2 | |
border_radius = 20 | |
# Draw the rounded rectangle | |
fill_color = (255, 255, 255, 200) | |
draw.rounded_rectangle( | |
[left, top, right, bottom], | |
fill=fill_color, | |
outline=None, | |
radius=border_radius, | |
) | |
img.paste(Image.alpha_composite(img.convert("RGBA"), tmp_img), (0, 0), tmp_img) | |
draw = ImageDraw.Draw(img) | |
# Title text | |
title = f"光束守護者 - {player_name} 的冒險故事" | |
title_x, title_y = left + 20, top + 20 # Adjust padding as needed | |
draw.text((title_x, title_y), title, font=title_font, fill="black") | |
# Paragraph text with newlines | |
body_x, body_y = left + 20, title_y + 60 # Adjust position as needed | |
for line in paragraph.split("\n"): | |
wrapped_lines = textwrap.wrap(line, width=63) | |
for wrapped_line in wrapped_lines: | |
draw.text((body_x, body_y), wrapped_line, font=body_font, fill="black") | |
body_y += 25 | |
# Save the image with the text | |
def get_md5_hash(text): | |
return hashlib.md5(text.encode("utf-8")).hexdigest() | |
updated_image_path = f"certificate_{get_md5_hash(player_backend_user_id)}.png" | |
img.save(updated_image_path) | |
return updated_image_path | |