Spaces:
Runtime error
Runtime error
ChiBenevisamPas
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,15 @@ import gradio as gr
|
|
2 |
import whisper
|
3 |
import os
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
-
from docx import Document
|
6 |
-
from fpdf import FPDF
|
7 |
-
from pptx import Presentation
|
8 |
-
import subprocess
|
9 |
-
import shlex
|
|
|
10 |
|
11 |
-
# Load the Whisper model
|
12 |
-
model = whisper.load_model("tiny")
|
13 |
|
14 |
# Load M2M100 translation model for different languages
|
15 |
def load_translation_model(target_language):
|
@@ -17,12 +18,20 @@ def load_translation_model(target_language):
|
|
17 |
"fa": "fa", # Persian (Farsi)
|
18 |
"es": "es", # Spanish
|
19 |
"fr": "fr", # French
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
target_lang_code = lang_codes.get(target_language)
|
22 |
if not target_lang_code:
|
23 |
raise ValueError(f"Translation model for {target_language} not supported")
|
24 |
|
25 |
-
# Load M2M100 model and tokenizer
|
26 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
27 |
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
28 |
|
@@ -39,7 +48,7 @@ def translate_text(text, tokenizer, model):
|
|
39 |
except Exception as e:
|
40 |
raise RuntimeError(f"Error during translation: {e}")
|
41 |
|
42 |
-
# Helper function to format timestamps in SRT format
|
43 |
def format_timestamp(seconds):
|
44 |
milliseconds = int((seconds % 1) * 1000)
|
45 |
seconds = int(seconds)
|
@@ -66,73 +75,81 @@ def write_srt(transcription, output_file, tokenizer=None, translation_model=None
|
|
66 |
f.write(f"{start_time} --> {end_time}\n")
|
67 |
f.write(f"{text.strip()}\n\n")
|
68 |
|
|
|
69 |
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
70 |
-
"""Uses ffmpeg to burn subtitles into the video (hardsub)."""
|
71 |
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
72 |
-
|
73 |
try:
|
74 |
-
print(f"Running command: {command}") # Debug statement
|
75 |
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
|
76 |
-
print(f"ffmpeg output: {process.stdout}") # Debug statement
|
77 |
if process.returncode != 0:
|
78 |
-
raise RuntimeError(f"ffmpeg error: {process.stderr}")
|
79 |
except subprocess.TimeoutExpired:
|
80 |
raise RuntimeError("ffmpeg process timed out.")
|
81 |
except Exception as e:
|
82 |
raise RuntimeError(f"Error running ffmpeg: {e}")
|
83 |
|
84 |
-
|
85 |
-
|
86 |
doc = Document()
|
|
|
87 |
for i, segment in enumerate(transcription['segments']):
|
88 |
text = segment['text']
|
89 |
-
|
90 |
if translation_model:
|
91 |
text = translate_text(text, tokenizer, translation_model)
|
92 |
-
|
93 |
-
|
|
|
94 |
doc.save(output_file)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
96 |
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
97 |
-
"""Creates a PDF document from the transcription without timestamps."""
|
98 |
pdf = FPDF()
|
99 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
100 |
pdf.add_page()
|
101 |
-
|
102 |
-
|
|
|
103 |
for i, segment in enumerate(transcription['segments']):
|
104 |
text = segment['text']
|
105 |
-
|
106 |
if translation_model:
|
107 |
text = translate_text(text, tokenizer, translation_model)
|
108 |
-
|
109 |
-
pdf.multi_cell(0, 10, f"{i + 1}. {
|
110 |
-
|
111 |
pdf.output(output_file)
|
112 |
|
|
|
113 |
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
114 |
-
"""Creates a PowerPoint presentation from the transcription without timestamps."""
|
115 |
ppt = Presentation()
|
116 |
-
|
117 |
for i, segment in enumerate(transcription['segments']):
|
118 |
text = segment['text']
|
119 |
-
|
120 |
if translation_model:
|
121 |
text = translate_text(text, tokenizer, translation_model)
|
122 |
-
|
123 |
-
slide = ppt.slides.add_slide(ppt.slide_layouts[5]) # Blank slide
|
124 |
title = slide.shapes.title
|
125 |
title.text = f"{i + 1}. {text.strip()}"
|
126 |
-
|
127 |
ppt.save(output_file)
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
result = model.transcribe(video_file.name, language=language)
|
133 |
-
video_name = os.path.splitext(video_file.name)[0]
|
134 |
-
|
135 |
-
# Load the translation model for the selected subtitle language
|
136 |
if target_language != "en":
|
137 |
try:
|
138 |
tokenizer, translation_model = load_translation_model(target_language)
|
@@ -141,23 +158,21 @@ def transcribe_video(video_file, language, target_language, output_format):
|
|
141 |
else:
|
142 |
tokenizer, translation_model = None, None
|
143 |
|
144 |
-
# Save the SRT file
|
145 |
srt_file = f"{video_name}.srt"
|
146 |
write_srt(result, srt_file, tokenizer, translation_model)
|
147 |
|
148 |
-
# Output based on user's selection
|
149 |
if output_format == "SRT":
|
150 |
return srt_file
|
151 |
elif output_format == "Video with Hardsub":
|
152 |
output_video = f"{video_name}_with_subtitles.mp4"
|
153 |
try:
|
154 |
-
embed_hardsub_in_video(
|
155 |
return output_video
|
156 |
except Exception as e:
|
157 |
raise RuntimeError(f"Error embedding subtitles in video: {e}")
|
158 |
elif output_format == "Word":
|
159 |
word_file = f"{video_name}.docx"
|
160 |
-
write_word(result, word_file, tokenizer, translation_model)
|
161 |
return word_file
|
162 |
elif output_format == "PDF":
|
163 |
pdf_file = f"{video_name}.pdf"
|
@@ -168,19 +183,28 @@ def transcribe_video(video_file, language, target_language, output_format):
|
|
168 |
write_ppt(result, ppt_file, tokenizer, translation_model)
|
169 |
return ppt_file
|
170 |
|
171 |
-
# Gradio interface
|
172 |
iface = gr.Interface(
|
173 |
fn=transcribe_video,
|
174 |
inputs=[
|
175 |
-
gr.File(label="Upload Video"),
|
176 |
-
gr.
|
177 |
-
gr.Dropdown(label="Select
|
178 |
-
gr.
|
|
|
179 |
],
|
180 |
-
outputs=gr.File(label="Download
|
181 |
-
title="Video Subtitle Generator with
|
182 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
)
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
-
iface.launch()
|
|
|
|
|
|
2 |
import whisper
|
3 |
import os
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
+
from docx import Document
|
6 |
+
from fpdf import FPDF
|
7 |
+
from pptx import Presentation
|
8 |
+
import subprocess
|
9 |
+
import shlex
|
10 |
+
import yt_dlp
|
11 |
|
12 |
+
# Load the Whisper model (smaller model for faster transcription)
|
13 |
+
model = whisper.load_model("tiny")
|
14 |
|
15 |
# Load M2M100 translation model for different languages
|
16 |
def load_translation_model(target_language):
|
|
|
18 |
"fa": "fa", # Persian (Farsi)
|
19 |
"es": "es", # Spanish
|
20 |
"fr": "fr", # French
|
21 |
+
"de": "de", # German
|
22 |
+
"it": "it", # Italian
|
23 |
+
"pt": "pt", # Portuguese
|
24 |
+
"ar": "ar", # Arabic
|
25 |
+
"zh": "zh", # Chinese
|
26 |
+
"hi": "hi", # Hindi
|
27 |
+
"ja": "ja", # Japanese
|
28 |
+
"ko": "ko", # Korean
|
29 |
+
"ru": "ru", # Russian
|
30 |
}
|
31 |
target_lang_code = lang_codes.get(target_language)
|
32 |
if not target_lang_code:
|
33 |
raise ValueError(f"Translation model for {target_language} not supported")
|
34 |
|
|
|
35 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
36 |
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
37 |
|
|
|
48 |
except Exception as e:
|
49 |
raise RuntimeError(f"Error during translation: {e}")
|
50 |
|
51 |
+
# Helper function to format timestamps in SRT format
|
52 |
def format_timestamp(seconds):
|
53 |
milliseconds = int((seconds % 1) * 1000)
|
54 |
seconds = int(seconds)
|
|
|
75 |
f.write(f"{start_time} --> {end_time}\n")
|
76 |
f.write(f"{text.strip()}\n\n")
|
77 |
|
78 |
+
# Embedding subtitles into video (hardsub)
|
79 |
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
|
|
80 |
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
|
|
81 |
try:
|
|
|
82 |
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
|
|
|
83 |
if process.returncode != 0:
|
84 |
+
raise RuntimeError(f"ffmpeg error: {process.stderr}")
|
85 |
except subprocess.TimeoutExpired:
|
86 |
raise RuntimeError("ffmpeg process timed out.")
|
87 |
except Exception as e:
|
88 |
raise RuntimeError(f"Error running ffmpeg: {e}")
|
89 |
|
90 |
+
# Helper function to write Word documents
|
91 |
+
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
|
92 |
doc = Document()
|
93 |
+
rtl = target_language == "fa"
|
94 |
for i, segment in enumerate(transcription['segments']):
|
95 |
text = segment['text']
|
|
|
96 |
if translation_model:
|
97 |
text = translate_text(text, tokenizer, translation_model)
|
98 |
+
para = doc.add_paragraph(f"{i + 1}. {text.strip()}")
|
99 |
+
if rtl:
|
100 |
+
para.paragraph_format.right_to_left = True
|
101 |
doc.save(output_file)
|
102 |
|
103 |
+
# Helper function to reverse text for RTL
|
104 |
+
def reverse_text_for_rtl(text):
|
105 |
+
return ' '.join([word[::-1] for word in text.split()])
|
106 |
+
|
107 |
+
# Helper function to write PDF documents
|
108 |
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
|
|
109 |
pdf = FPDF()
|
|
|
110 |
pdf.add_page()
|
111 |
+
font_path = "/home/user/app/B-NAZANIN.TTF"
|
112 |
+
pdf.add_font('B-NAZANIN', '', font_path, uni=True)
|
113 |
+
pdf.set_font('B-NAZANIN', size=12)
|
114 |
for i, segment in enumerate(transcription['segments']):
|
115 |
text = segment['text']
|
|
|
116 |
if translation_model:
|
117 |
text = translate_text(text, tokenizer, translation_model)
|
118 |
+
reversed_text = reverse_text_for_rtl(text)
|
119 |
+
pdf.multi_cell(0, 10, f"{i + 1}. {reversed_text.strip()}", align='R')
|
|
|
120 |
pdf.output(output_file)
|
121 |
|
122 |
+
# Helper function to write PowerPoint slides
|
123 |
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
|
|
124 |
ppt = Presentation()
|
|
|
125 |
for i, segment in enumerate(transcription['segments']):
|
126 |
text = segment['text']
|
|
|
127 |
if translation_model:
|
128 |
text = translate_text(text, tokenizer, translation_model)
|
129 |
+
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
|
|
130 |
title = slide.shapes.title
|
131 |
title.text = f"{i + 1}. {text.strip()}"
|
|
|
132 |
ppt.save(output_file)
|
133 |
|
134 |
+
# Function to download YouTube video
|
135 |
+
def download_youtube_video(url):
|
136 |
+
ydl_opts = {
|
137 |
+
'format': 'mp4',
|
138 |
+
'outtmpl': 'downloaded_video.mp4',
|
139 |
+
}
|
140 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
141 |
+
ydl.download([url])
|
142 |
+
return 'downloaded_video.mp4'
|
143 |
+
|
144 |
+
# Transcribing video and generating output
|
145 |
+
def transcribe_video(video_file, video_url, language, target_language, output_format):
|
146 |
+
if video_url:
|
147 |
+
video_file_path = download_youtube_video(video_url)
|
148 |
+
else:
|
149 |
+
video_file_path = video_file.name
|
150 |
|
151 |
+
result = model.transcribe(video_file_path, language=language)
|
152 |
+
video_name = os.path.splitext(video_file_path)[0]
|
|
|
|
|
|
|
|
|
153 |
if target_language != "en":
|
154 |
try:
|
155 |
tokenizer, translation_model = load_translation_model(target_language)
|
|
|
158 |
else:
|
159 |
tokenizer, translation_model = None, None
|
160 |
|
|
|
161 |
srt_file = f"{video_name}.srt"
|
162 |
write_srt(result, srt_file, tokenizer, translation_model)
|
163 |
|
|
|
164 |
if output_format == "SRT":
|
165 |
return srt_file
|
166 |
elif output_format == "Video with Hardsub":
|
167 |
output_video = f"{video_name}_with_subtitles.mp4"
|
168 |
try:
|
169 |
+
embed_hardsub_in_video(video_file_path, srt_file, output_video)
|
170 |
return output_video
|
171 |
except Exception as e:
|
172 |
raise RuntimeError(f"Error embedding subtitles in video: {e}")
|
173 |
elif output_format == "Word":
|
174 |
word_file = f"{video_name}.docx"
|
175 |
+
write_word(result, word_file, tokenizer, translation_model, target_language)
|
176 |
return word_file
|
177 |
elif output_format == "PDF":
|
178 |
pdf_file = f"{video_name}.pdf"
|
|
|
183 |
write_ppt(result, ppt_file, tokenizer, translation_model)
|
184 |
return ppt_file
|
185 |
|
186 |
+
# Gradio interface with YouTube URL
|
187 |
iface = gr.Interface(
|
188 |
fn=transcribe_video,
|
189 |
inputs=[
|
190 |
+
gr.File(label="Upload Video File (or leave empty for YouTube link)"), # Removed 'optional=True'
|
191 |
+
gr.Textbox(label="YouTube Video URL (optional)", placeholder="https://www.youtube.com/watch?v=..."),
|
192 |
+
gr.Dropdown(label="Select Original Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
|
193 |
+
gr.Dropdown(label="Select Subtitle Translation Language", choices=["en", "fa", "es", "de", "fr", "it", "pt"], value="fa"),
|
194 |
+
gr.Radio(label="Choose Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub")
|
195 |
],
|
196 |
+
outputs=gr.File(label="Download File"),
|
197 |
+
title="Video Subtitle Generator with Translation & Multi-Format Output (Supports YouTube)",
|
198 |
+
description=(
|
199 |
+
"This tool allows you to generate subtitles from a video file or YouTube link using Whisper, "
|
200 |
+
"translate the subtitles into multiple languages using M2M100, and export them "
|
201 |
+
"in various formats including SRT, hardcoded subtitles in video, Word, PDF, or PowerPoint."
|
202 |
+
),
|
203 |
+
theme="compact",
|
204 |
+
live=False
|
205 |
)
|
206 |
|
207 |
if __name__ == "__main__":
|
208 |
+
iface.launch()
|
209 |
+
|
210 |
+
|