Chillarmo's picture
Update app.py
30aecac verified
raw
history blame
7.68 kB
import gradio as gr
import torch
import torch.nn as nn
import os
from outetts.v0_1.interface import InterfaceHF
import soundfile as sf
import tempfile
from faster_whisper import WhisperModel
from pathlib import Path
# Configure PyTorch for CPU efficiency
torch.set_num_threads(4) # Limit CPU threads
torch.set_grad_enabled(False) # Disable gradient computation
class OptimizedTTSInterface:
def __init__(self, model_name="OuteAI/OuteTTS-0.1-350M"):
self.interface = InterfaceHF(model_name)
# Quantize the model to INT8
self.interface.model = torch.quantization.quantize_dynamic(
self.interface.model, {nn.Linear}, dtype=torch.qint8
)
# Move model to CPU and enable inference mode
self.interface.model.cpu()
self.interface.model.eval()
def create_speaker(self, *args, **kwargs):
with torch.inference_mode():
return self.interface.create_speaker(*args, **kwargs)
def generate(self, *args, **kwargs):
with torch.inference_mode():
return self.interface.generate(*args, **kwargs)
def initialize_models():
"""Initialize the OptimizedTTS and Faster-Whisper models"""
# Use cached models if available
cache_dir = Path("model_cache")
cache_dir.mkdir(exist_ok=True)
tts_interface = OptimizedTTSInterface()
# Initialize Whisper with maximum optimization
asr_model = WhisperModel("tiny",
device="cpu",
compute_type="int8",
num_workers=1,
cpu_threads=2,
download_root=str(cache_dir))
return tts_interface, asr_model
def transcribe_audio(audio_path):
"""Transcribe audio using Faster-Whisper tiny"""
try:
segments, _ = ASR_MODEL.transcribe(audio_path,
beam_size=1,
best_of=1,
temperature=1.0,
condition_on_previous_text=False,
compression_ratio_threshold=2.4,
log_prob_threshold=-1.0,
no_speech_threshold=0.6)
text = " ".join([segment.text for segment in segments]).strip()
return text
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def preprocess_audio(audio_path):
"""Preprocess audio to reduce memory usage"""
try:
# Load and resample audio to 16kHz if needed
data, sr = sf.read(audio_path)
if sr != 16000:
import resampy
data = resampy.resample(data, sr, 16000)
sr = 16000
# Convert to mono if stereo
if len(data.shape) > 1:
data = data.mean(axis=1)
# Save preprocessed audio
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
sf.write(temp_file.name, data, sr)
return temp_file.name
except Exception as e:
return audio_path # Return original if preprocessing fails
def process_audio_file(audio_path, reference_text, text_to_speak, temperature=0.1, repetition_penalty=1.1):
"""Process the audio file and generate speech with the cloned voice"""
try:
# Preprocess audio
processed_audio = preprocess_audio(audio_path)
# If no reference text provided, transcribe the audio
if not reference_text.strip():
reference_text = transcribe_audio(processed_audio)
if reference_text.startswith("Error"):
return None, reference_text
# Create speaker from reference audio
speaker = TTS_INTERFACE.create_speaker(
processed_audio,
reference_text
)
# Generate speech with cloned voice
output = TTS_INTERFACE.generate(
text=text_to_speak,
speaker=speaker,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_lenght=4096
)
# Clean up preprocessed audio if it was created
if processed_audio != audio_path:
try:
os.unlink(processed_audio)
except:
pass
# Save output to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
output.save(temp_file.name)
return temp_file.name, f"Voice cloning successful!\nReference text used: {reference_text}"
except Exception as e:
if processed_audio != audio_path:
try:
os.unlink(processed_audio)
except:
pass
return None, f"Error: {str(e)}"
print("Initializing models...")
# Initialize models globally
TTS_INTERFACE, ASR_MODEL = initialize_models()
print("Models initialized!")
# Create Gradio interface
with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
gr.Markdown("# πŸŽ™οΈ Optimized Voice Cloning with OuteTTS")
gr.Markdown("""
This app uses optimized versions of OuteTTS and Whisper for efficient voice cloning on CPU.
Upload a reference audio file, provide the text being spoken in that audio (or leave blank for automatic transcription),
and enter the new text you want to be spoken in the cloned voice.
Note: For best results, use clear audio with minimal background noise.
""")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Reference Audio",
type="filepath"
)
reference_text = gr.Textbox(
label="Reference Text (leave blank for auto-transcription)",
placeholder="Leave empty to auto-transcribe or enter the exact text from the reference audio"
)
text_to_speak = gr.Textbox(
label="Text to Speak",
placeholder="Enter the text you want the cloned voice to speak"
)
with gr.Row():
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.1,
label="Temperature"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty"
)
submit_btn = gr.Button("Generate Voice", variant="primary")
with gr.Column():
output_audio = gr.Audio(label="Generated Speech")
output_message = gr.Textbox(label="Status", max_lines=3)
submit_btn.click(
fn=process_audio_file,
inputs=[audio_input, reference_text, text_to_speak, temperature, repetition_penalty],
outputs=[output_audio, output_message]
)
gr.Markdown("""
### Optimization Notes:
- Using INT8 quantization for efficient CPU usage
- Optimized audio preprocessing
- Cached model loading
- Memory-efficient inference
### Tips for best results:
1. Use clear, high-quality reference audio
2. Keep reference audio short (5-10 seconds)
3. Verify auto-transcription accuracy
4. For best quality, manually input exact reference text
5. Keep generated text concise
""")
if __name__ == "__main__":
demo.launch()