Update app.py
Browse files
app.py
CHANGED
@@ -1,198 +1,114 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import os
|
4 |
from outetts.v0_1.interface import InterfaceHF
|
5 |
import soundfile as sf
|
6 |
import tempfile
|
|
|
7 |
from faster_whisper import WhisperModel
|
8 |
-
from pathlib import Path
|
9 |
-
|
10 |
-
# Configure PyTorch for CPU efficiency
|
11 |
-
torch.set_num_threads(4) # Limit CPU threads
|
12 |
-
torch.set_grad_enabled(False) # Disable gradient computation
|
13 |
-
|
14 |
-
class OptimizedTTSInterface:
|
15 |
-
def __init__(self, model_name="OuteAI/OuteTTS-0.1-350M"):
|
16 |
-
self.interface = InterfaceHF(model_name)
|
17 |
-
# Apply FP16 optimization where possible
|
18 |
-
self.interface.model = self.interface.model.half().float()
|
19 |
-
# Cache commonly used attributes
|
20 |
-
self.tokenizer = self.interface.model.tokenizer
|
21 |
-
|
22 |
-
def create_speaker(self, *args, **kwargs):
|
23 |
-
with torch.inference_mode():
|
24 |
-
return self.interface.create_speaker(*args, **kwargs)
|
25 |
-
|
26 |
-
def generate(self, *args, **kwargs):
|
27 |
-
with torch.inference_mode():
|
28 |
-
return self.interface.generate(*args, **kwargs)
|
29 |
|
30 |
def initialize_models():
|
31 |
-
"""Initialize the
|
32 |
-
|
33 |
-
|
34 |
-
cache_dir.mkdir(exist_ok=True)
|
35 |
-
|
36 |
-
# Set environment variables for better performance
|
37 |
-
os.environ['OMP_NUM_THREADS'] = '4'
|
38 |
-
os.environ['MKL_NUM_THREADS'] = '4'
|
39 |
-
|
40 |
-
print("Loading ASR model...")
|
41 |
asr_model = WhisperModel("tiny",
|
42 |
device="cpu",
|
43 |
-
compute_type="int8",
|
44 |
-
num_workers=1,
|
45 |
-
cpu_threads=
|
46 |
-
download_root=str(cache_dir))
|
47 |
-
|
48 |
-
print("Loading TTS model...")
|
49 |
-
tts_interface = OptimizedTTSInterface()
|
50 |
-
|
51 |
return tts_interface, asr_model
|
52 |
|
|
|
|
|
|
|
53 |
def transcribe_audio(audio_path):
|
54 |
"""Transcribe audio using Faster-Whisper tiny"""
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
64 |
|
|
|
65 |
text = " ".join([segment.text for segment in segments]).strip()
|
66 |
return text
|
67 |
except Exception as e:
|
68 |
return f"Error transcribing audio: {str(e)}"
|
69 |
|
70 |
-
def preprocess_audio(audio_path):
|
71 |
-
"""Preprocess audio to reduce memory usage"""
|
72 |
-
try:
|
73 |
-
# Load and resample audio to 16kHz if needed
|
74 |
-
data, sr = sf.read(audio_path)
|
75 |
-
if sr != 16000:
|
76 |
-
import resampy
|
77 |
-
data = resampy.resample(data, sr, 16000)
|
78 |
-
sr = 16000
|
79 |
-
|
80 |
-
# Convert to mono if stereo
|
81 |
-
if len(data.shape) > 1:
|
82 |
-
data = data.mean(axis=1)
|
83 |
-
|
84 |
-
# Normalize audio
|
85 |
-
data = data / max(abs(data.max()), abs(data.min()))
|
86 |
-
|
87 |
-
# Save preprocessed audio
|
88 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
89 |
-
sf.write(temp_file.name, data, sr)
|
90 |
-
return temp_file.name
|
91 |
-
except Exception as e:
|
92 |
-
return audio_path # Return original if preprocessing fails
|
93 |
-
|
94 |
def process_audio_file(audio_path, reference_text, text_to_speak, temperature=0.1, repetition_penalty=1.1):
|
95 |
"""Process the audio file and generate speech with the cloned voice"""
|
96 |
try:
|
97 |
-
# Preprocess audio
|
98 |
-
processed_audio = preprocess_audio(audio_path)
|
99 |
-
|
100 |
# If no reference text provided, transcribe the audio
|
101 |
if not reference_text.strip():
|
102 |
-
reference_text = transcribe_audio(
|
103 |
if reference_text.startswith("Error"):
|
104 |
return None, reference_text
|
105 |
-
|
106 |
# Create speaker from reference audio
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
112 |
-
|
113 |
-
# Generate speech with cloned voice
|
114 |
-
output = TTS_INTERFACE.generate(
|
115 |
-
text=text_to_speak,
|
116 |
-
speaker=speaker,
|
117 |
-
temperature=temperature,
|
118 |
-
repetition_penalty=repetition_penalty,
|
119 |
-
max_lenght=4096
|
120 |
-
)
|
121 |
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
|
129 |
-
# Save
|
130 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
131 |
output.save(temp_file.name)
|
132 |
return temp_file.name, f"Voice cloning successful!\nReference text used: {reference_text}"
|
133 |
|
134 |
except Exception as e:
|
135 |
-
if processed_audio != audio_path:
|
136 |
-
try:
|
137 |
-
os.unlink(processed_audio)
|
138 |
-
except:
|
139 |
-
pass
|
140 |
return None, f"Error: {str(e)}"
|
141 |
|
142 |
-
print("Starting initialization...")
|
143 |
-
# Initialize models globally
|
144 |
-
TTS_INTERFACE, ASR_MODEL = initialize_models()
|
145 |
-
print("Models initialized successfully!")
|
146 |
-
|
147 |
# Create Gradio interface
|
148 |
with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
149 |
-
gr.Markdown("# 🎙️
|
150 |
gr.Markdown("""
|
151 |
-
This app uses
|
152 |
-
Upload a reference audio file, provide the text being spoken in that audio (or leave blank for automatic transcription),
|
153 |
and enter the new text you want to be spoken in the cloned voice.
|
154 |
|
155 |
-
Note:
|
156 |
""")
|
157 |
|
158 |
with gr.Row():
|
159 |
with gr.Column():
|
160 |
-
|
161 |
-
|
162 |
-
type="filepath",
|
163 |
-
source="microphone"
|
164 |
-
)
|
165 |
reference_text = gr.Textbox(
|
166 |
-
label="Reference Text (leave blank for auto-transcription)",
|
167 |
placeholder="Leave empty to auto-transcribe or enter the exact text from the reference audio"
|
168 |
)
|
169 |
text_to_speak = gr.Textbox(
|
170 |
-
label="Text to Speak",
|
171 |
placeholder="Enter the text you want the cloned voice to speak"
|
172 |
)
|
173 |
|
174 |
with gr.Row():
|
175 |
-
temperature = gr.Slider(
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
step=0.1,
|
180 |
-
label="Temperature"
|
181 |
-
)
|
182 |
-
repetition_penalty = gr.Slider(
|
183 |
-
minimum=1.0,
|
184 |
-
maximum=2.0,
|
185 |
-
value=1.1,
|
186 |
-
step=0.1,
|
187 |
-
label="Repetition Penalty"
|
188 |
-
)
|
189 |
|
|
|
190 |
submit_btn = gr.Button("Generate Voice", variant="primary")
|
191 |
|
192 |
with gr.Column():
|
|
|
193 |
output_audio = gr.Audio(label="Generated Speech")
|
194 |
output_message = gr.Textbox(label="Status", max_lines=3)
|
195 |
|
|
|
196 |
submit_btn.click(
|
197 |
fn=process_audio_file,
|
198 |
inputs=[audio_input, reference_text, text_to_speak, temperature, repetition_penalty],
|
@@ -200,18 +116,14 @@ with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
|
200 |
)
|
201 |
|
202 |
gr.Markdown("""
|
203 |
-
### Optimization Notes:
|
204 |
-
- Optimized for CPU performance
|
205 |
-
- Model caching enabled
|
206 |
-
- Memory-efficient inference
|
207 |
-
- Automatic audio preprocessing
|
208 |
-
|
209 |
### Tips for best results:
|
210 |
-
1. Use
|
211 |
-
2.
|
212 |
-
3.
|
213 |
-
4.
|
214 |
-
5.
|
|
|
|
|
215 |
""")
|
216 |
|
217 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from outetts.v0_1.interface import InterfaceHF
|
4 |
import soundfile as sf
|
5 |
import tempfile
|
6 |
+
import os
|
7 |
from faster_whisper import WhisperModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def initialize_models():
|
10 |
+
"""Initialize the OuteTTS and Faster-Whisper models"""
|
11 |
+
tts_interface = InterfaceHF("OuteAI/OuteTTS-0.1-350M")
|
12 |
+
# Use tiny model with lowest compute settings for maximum speed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
asr_model = WhisperModel("tiny",
|
14 |
device="cpu",
|
15 |
+
compute_type="int8", # Use int8 quantization for efficiency
|
16 |
+
num_workers=1, # Limit workers for low-resource environment
|
17 |
+
cpu_threads=1) # Limit CPU threads
|
|
|
|
|
|
|
|
|
|
|
18 |
return tts_interface, asr_model
|
19 |
|
20 |
+
# Initialize models globally to avoid reloading
|
21 |
+
TTS_INTERFACE, ASR_MODEL = initialize_models()
|
22 |
+
|
23 |
def transcribe_audio(audio_path):
|
24 |
"""Transcribe audio using Faster-Whisper tiny"""
|
25 |
try:
|
26 |
+
# Transcribe with minimal settings for speed
|
27 |
+
segments, _ = ASR_MODEL.transcribe(audio_path,
|
28 |
+
beam_size=1, # Reduce beam size
|
29 |
+
best_of=1, # Don't generate alternatives
|
30 |
+
temperature=1.0, # No temperature sampling
|
31 |
+
condition_on_previous_text=False, # Don't condition on previous
|
32 |
+
compression_ratio_threshold=2.4, # Less strict threshold
|
33 |
+
log_prob_threshold=-1.0, # Less strict threshold
|
34 |
+
no_speech_threshold=0.6) # Less strict threshold
|
35 |
|
36 |
+
# Combine all segments
|
37 |
text = " ".join([segment.text for segment in segments]).strip()
|
38 |
return text
|
39 |
except Exception as e:
|
40 |
return f"Error transcribing audio: {str(e)}"
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def process_audio_file(audio_path, reference_text, text_to_speak, temperature=0.1, repetition_penalty=1.1):
|
43 |
"""Process the audio file and generate speech with the cloned voice"""
|
44 |
try:
|
|
|
|
|
|
|
45 |
# If no reference text provided, transcribe the audio
|
46 |
if not reference_text.strip():
|
47 |
+
reference_text = transcribe_audio(audio_path)
|
48 |
if reference_text.startswith("Error"):
|
49 |
return None, reference_text
|
50 |
+
|
51 |
# Create speaker from reference audio
|
52 |
+
speaker = TTS_INTERFACE.create_speaker(
|
53 |
+
audio_path,
|
54 |
+
reference_text
|
55 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Generate speech with cloned voice
|
58 |
+
output = TTS_INTERFACE.generate(
|
59 |
+
text=text_to_speak,
|
60 |
+
speaker=speaker,
|
61 |
+
temperature=temperature,
|
62 |
+
repetition_penalty=repetition_penalty,
|
63 |
+
max_lenght=4096
|
64 |
+
)
|
65 |
|
66 |
+
# Save to temporary file and return path
|
67 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
68 |
output.save(temp_file.name)
|
69 |
return temp_file.name, f"Voice cloning successful!\nReference text used: {reference_text}"
|
70 |
|
71 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
72 |
return None, f"Error: {str(e)}"
|
73 |
|
|
|
|
|
|
|
|
|
|
|
74 |
# Create Gradio interface
|
75 |
with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
76 |
+
gr.Markdown("# 🎙️ Voice Cloning with OuteTTS")
|
77 |
gr.Markdown("""
|
78 |
+
This app uses OuteTTS to clone voices. Upload a reference audio file, provide the text being spoken in that audio (or leave blank for automatic transcription),
|
|
|
79 |
and enter the new text you want to be spoken in the cloned voice.
|
80 |
|
81 |
+
Note: For best results, use clear audio with minimal background noise.
|
82 |
""")
|
83 |
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
+
# Input components
|
87 |
+
audio_input = gr.Audio(label="Upload Reference Audio", type="filepath")
|
|
|
|
|
|
|
88 |
reference_text = gr.Textbox(
|
89 |
+
label="Reference Text (what is being said in the audio, leave blank for auto-transcription)",
|
90 |
placeholder="Leave empty to auto-transcribe or enter the exact text from the reference audio"
|
91 |
)
|
92 |
text_to_speak = gr.Textbox(
|
93 |
+
label="Text to Speak (what you want the cloned voice to say)",
|
94 |
placeholder="Enter the text you want the cloned voice to speak"
|
95 |
)
|
96 |
|
97 |
with gr.Row():
|
98 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.1, step=0.1,
|
99 |
+
label="Temperature (higher = more variation)")
|
100 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1,
|
101 |
+
label="Repetition Penalty")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Submit button
|
104 |
submit_btn = gr.Button("Generate Voice", variant="primary")
|
105 |
|
106 |
with gr.Column():
|
107 |
+
# Output components
|
108 |
output_audio = gr.Audio(label="Generated Speech")
|
109 |
output_message = gr.Textbox(label="Status", max_lines=3)
|
110 |
|
111 |
+
# Handle submission
|
112 |
submit_btn.click(
|
113 |
fn=process_audio_file,
|
114 |
inputs=[audio_input, reference_text, text_to_speak, temperature, repetition_penalty],
|
|
|
116 |
)
|
117 |
|
118 |
gr.Markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
### Tips for best results:
|
120 |
+
1. Use high-quality reference audio (clear speech, minimal background noise)
|
121 |
+
2. If providing reference text manually, ensure it matches the audio exactly
|
122 |
+
3. If using auto-transcription, verify the transcribed text in the status message
|
123 |
+
4. Keep generated text relatively short for better quality
|
124 |
+
5. Adjust temperature and repetition penalty if needed:
|
125 |
+
- Lower temperature (0.1-0.3) for more consistent output
|
126 |
+
- Higher repetition penalty (1.1-1.3) to avoid repetition
|
127 |
""")
|
128 |
|
129 |
if __name__ == "__main__":
|