import gradio as gr import torch from outetts.v0_1.interface import InterfaceHF import soundfile as sf import tempfile import os from faster_whisper import WhisperModel def initialize_models(): """Initialize the OuteTTS and Faster-Whisper models""" tts_interface = InterfaceHF("OuteAI/OuteTTS-0.1-350M") # Use tiny model with lowest compute settings for maximum speed asr_model = WhisperModel("tiny", device="cpu", compute_type="int8", # Use int8 quantization for efficiency num_workers=1, # Limit workers for low-resource environment cpu_threads=1) # Limit CPU threads return tts_interface, asr_model # Initialize models globally to avoid reloading TTS_INTERFACE, ASR_MODEL = initialize_models() def transcribe_audio(audio_path): """Transcribe audio using Faster-Whisper tiny""" try: # Transcribe with minimal settings for speed segments, _ = ASR_MODEL.transcribe(audio_path, beam_size=1, best_of=1, temperature=1.0, condition_on_previous_text=False, compression_ratio_threshold=2.4, log_prob_threshold=-1.0, no_speech_threshold=0.6) # Combine all segments text = " ".join([segment.text for segment in segments]).strip() return text except Exception as e: return f"Error transcribing audio: {str(e)}" def process_audio_file(audio_path, reference_text, text_to_speak, temperature=0.1, repetition_penalty=1.1): """Process the audio file and generate speech with the cloned voice""" try: # If no reference text provided, transcribe the audio if not reference_text.strip(): gr.Info("Transcribing audio...") reference_text = transcribe_audio(audio_path) if reference_text.startswith("Error"): return None, reference_text gr.Info(f"Using reference text: {reference_text}") # Create speaker from reference audio speaker = TTS_INTERFACE.create_speaker( audio_path, reference_text[:4000] # Limit reference text length ) # Generate speech with cloned voice output = TTS_INTERFACE.generate( text=text_to_speak[:500], # Limit output text length speaker=speaker, temperature=temperature, repetition_penalty=repetition_penalty, max_lenght=2048 # Reduced from 4096 to avoid errors ) # Save to temporary file and return path temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") output.save(temp_file.name) return temp_file.name, f"""Processing complete! Reference text: {reference_text[:500]}... (Showing first 500 characters of reference text)""" except Exception as e: return None, f"Error: {str(e)}" # Create Gradio interface with gr.Blocks(title="Voice Cloning with OuteTTS") as demo: gr.Markdown("# 🎙️ Voice Cloning with OuteTTS") gr.Markdown(""" This app uses OuteTTS to clone voices. Upload a reference audio file, provide the text being spoken in that audio (or leave blank for automatic transcription), and enter the new text you want to be spoken in the cloned voice. Note: - For best results, use clear audio with minimal background noise - Reference text is limited to 4000 characters - Output text is limited to 500 characters """) with gr.Row(): with gr.Column(): # Input components audio_input = gr.Audio(label="Upload Reference Audio", type="filepath") with gr.Row(): transcribe_btn = gr.Button("📝 Transcribe Audio", variant="secondary") reference_text = gr.Textbox( label="Reference Text (what is being said in the audio, leave blank for auto-transcription)", placeholder="Click 'Transcribe Audio' or enter the exact text from the reference audio", lines=3 ) text_to_speak = gr.Textbox( label="Text to Speak (what you want the cloned voice to say, max 500 characters)", placeholder="Enter the text you want the cloned voice to speak", lines=3, max_lines=5 ) with gr.Row(): temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.1, step=0.1, label="Temperature (higher = more variation)") repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty") # Submit button submit_btn = gr.Button("🎙️ Generate Voice", variant="primary") with gr.Column(): # Output components output_audio = gr.Audio(label="Generated Speech") output_message = gr.Textbox(label="Status", lines=4) # Handle transcription button def transcribe_button(audio): if not audio: return "Please upload audio first." return transcribe_audio(audio) transcribe_btn.click( fn=transcribe_button, inputs=[audio_input], outputs=[reference_text], ) # Handle main generation submit_btn.click( fn=process_audio_file, inputs=[audio_input, reference_text, text_to_speak, temperature, repetition_penalty], outputs=[output_audio, output_message] ) gr.Markdown(""" ### Tips for best results: 1. Use high-quality reference audio (clear speech, minimal background noise) 2. Try to keep reference audio under 30 seconds 3. If auto-transcription isn't accurate, you can manually correct the text 4. Keep generated text short for better quality 5. Adjust temperature and repetition penalty if needed: - Lower temperature (0.1-0.3) for more consistent output - Higher repetition penalty (1.1-1.3) to avoid repetition """) if __name__ == "__main__": demo.launch()