Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- README.md +0 -12
- app.py +72 -0
- requirements.txt +0 -0
README.md
CHANGED
@@ -1,12 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Best Guess
|
3 |
-
emoji: 💻
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.40.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from datasets import load_dataset
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import pipeline
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
dataset_id = "sentence-transformers/natural-questions"
|
11 |
+
dataset_file = load_dataset(dataset_id, split="train")
|
12 |
+
|
13 |
+
# Use the allenai-specter model with SentenceTransformers
|
14 |
+
model = SentenceTransformer('allenai-specter')
|
15 |
+
|
16 |
+
# Prepare paper texts by combining query and answer fields
|
17 |
+
paper_texts = [
|
18 |
+
record['query'] + '[SEP]' + record['answer'] for record in dataset_file.select(range(32))
|
19 |
+
]
|
20 |
+
|
21 |
+
# Compute embeddings for all paper texts
|
22 |
+
corpus_embeddings = model.encode(paper_texts, convert_to_tensor=True, show_progress_bar=True)
|
23 |
+
|
24 |
+
# Function to search for answers given a query
|
25 |
+
def search_papers(query):
|
26 |
+
# Encode the query
|
27 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
28 |
+
|
29 |
+
# Perform semantic search
|
30 |
+
search_hits = util.semantic_search(query_embedding, corpus_embeddings)
|
31 |
+
search_hits = search_hits[0] # Get the hits for the first query
|
32 |
+
|
33 |
+
print("\n\nQuery:", query)
|
34 |
+
print("Most similar answers:")
|
35 |
+
for hit in search_hits[:5]: # Limit to top 5 results for clarity
|
36 |
+
related_text = dataset_file[int(hit['corpus_id'])] # Access related record
|
37 |
+
print("{:.2f}\tAnswer: {}".format(
|
38 |
+
hit['score'], related_text['answer']
|
39 |
+
))
|
40 |
+
|
41 |
+
|
42 |
+
# Summarization pipeline
|
43 |
+
summarizer = pipeline("summarization")
|
44 |
+
|
45 |
+
# Collect the relevant answers from the search function
|
46 |
+
def search_papers_and_summarize(query, max_summary_length=45):
|
47 |
+
# Encode the query
|
48 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
49 |
+
|
50 |
+
# Perform semantic search
|
51 |
+
search_hits = util.semantic_search(query_embedding, corpus_embeddings)
|
52 |
+
search_hits = search_hits[0] # Get the hits for the first query
|
53 |
+
|
54 |
+
# Collect answers from top hits
|
55 |
+
answers = []
|
56 |
+
for hit in search_hits[:5]: # Limit to top 5 results
|
57 |
+
related_text = dataset_file[int(hit['corpus_id'])]
|
58 |
+
answers.append(related_text['answer'])
|
59 |
+
|
60 |
+
# Combine answers into a single text for summarization
|
61 |
+
combined_text = " ".join(answers)
|
62 |
+
|
63 |
+
# Summarize the combined text
|
64 |
+
summary = summarizer(combined_text, max_length=max_summary_length, clean_up_tokenization_spaces=True)
|
65 |
+
print("Summary:")
|
66 |
+
print(summary[0]['summary_text'])
|
67 |
+
|
68 |
+
|
69 |
+
title = st.text_input("Ask a question", "What is Wimpy Kid")
|
70 |
+
new_preds = search_papers_and_summarize(title)
|
71 |
+
st.write("The Answer is", new_preds)
|
72 |
+
|
requirements.txt
ADDED
File without changes
|