File size: 8,232 Bytes
d60982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['forward_hook', 'Clone', 'Add', 'Cat', 'ReLU', 'GELU', 'Dropout', 'BatchNorm2d', 'Linear', 'MaxPool2d',
           'AdaptiveAvgPool2d', 'AvgPool2d', 'Conv2d', 'Sequential', 'safe_divide', 'einsum', 'Softmax', 'IndexSelect',
           'LayerNorm', 'AddEye']


def safe_divide(a, b):
    den = b.clamp(min=1e-9) + b.clamp(max=1e-9)
    den = den + den.eq(0).type(den.type()) * 1e-9
    return a / den * b.ne(0).type(b.type())


def forward_hook(self, input, output):
    if type(input[0]) in (list, tuple):
        self.X = []
        for i in input[0]:
            x = i.detach()
            x.requires_grad = True
            self.X.append(x)
    else:
        self.X = input[0].detach()
        self.X.requires_grad = True

    self.Y = output


def backward_hook(self, grad_input, grad_output):
    self.grad_input = grad_input
    self.grad_output = grad_output


class RelProp(nn.Module):
    def __init__(self):
        super(RelProp, self).__init__()
        # if not self.training:
        self.register_forward_hook(forward_hook)

    def gradprop(self, Z, X, S):
        C = torch.autograd.grad(Z, X, S, retain_graph=True)
        return C

    def relprop(self, R, alpha):
        return R

class RelPropSimple(RelProp):
    def relprop(self, R, alpha):
        Z = self.forward(self.X)
        S = safe_divide(R, Z)
        C = self.gradprop(Z, self.X, S)

        if torch.is_tensor(self.X) == False:
            outputs = []
            outputs.append(self.X[0] * C[0])
            outputs.append(self.X[1] * C[1])
        else:
            outputs = self.X * (C[0])
        return outputs

class AddEye(RelPropSimple):
    # input of shape B, C, seq_len, seq_len
    def forward(self, input):
        return input + torch.eye(input.shape[2]).expand_as(input).to(input.device)

class ReLU(nn.ReLU, RelProp):
    pass

class GELU(nn.GELU, RelProp):
    pass

class Softmax(nn.Softmax, RelProp):
    pass

class LayerNorm(nn.LayerNorm, RelProp):
    pass

class Dropout(nn.Dropout, RelProp):
    pass


class MaxPool2d(nn.MaxPool2d, RelPropSimple):
    pass

class LayerNorm(nn.LayerNorm, RelProp):
    pass

class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d, RelPropSimple):
    pass


class AvgPool2d(nn.AvgPool2d, RelPropSimple):
    pass


class Add(RelPropSimple):
    def forward(self, inputs):
        return torch.add(*inputs)

    def relprop(self, R, alpha):
        Z = self.forward(self.X)
        S = safe_divide(R, Z)
        C = self.gradprop(Z, self.X, S)

        a = self.X[0] * C[0]
        b = self.X[1] * C[1]

        a_sum = a.sum()
        b_sum = b.sum()

        a_fact = safe_divide(a_sum.abs(), a_sum.abs() + b_sum.abs()) * R.sum()
        b_fact = safe_divide(b_sum.abs(), a_sum.abs() + b_sum.abs()) * R.sum()

        a = a * safe_divide(a_fact, a.sum())
        b = b * safe_divide(b_fact, b.sum())

        outputs = [a, b]

        return outputs

class einsum(RelPropSimple):
    def __init__(self, equation):
        super().__init__()
        self.equation = equation
    def forward(self, *operands):
        return torch.einsum(self.equation, *operands)

class IndexSelect(RelProp):
    def forward(self, inputs, dim, indices):
        self.__setattr__('dim', dim)
        self.__setattr__('indices', indices)

        return torch.index_select(inputs, dim, indices)

    def relprop(self, R, alpha):
        Z = self.forward(self.X, self.dim, self.indices)
        S = safe_divide(R, Z)
        C = self.gradprop(Z, self.X, S)

        if torch.is_tensor(self.X) == False:
            outputs = []
            outputs.append(self.X[0] * C[0])
            outputs.append(self.X[1] * C[1])
        else:
            outputs = self.X * (C[0])
        return outputs



class Clone(RelProp):
    def forward(self, input, num):
        self.__setattr__('num', num)
        outputs = []
        for _ in range(num):
            outputs.append(input)

        return outputs

    def relprop(self, R, alpha):
        Z = []
        for _ in range(self.num):
            Z.append(self.X)
        S = [safe_divide(r, z) for r, z in zip(R, Z)]
        C = self.gradprop(Z, self.X, S)[0]

        R = self.X * C

        return R

class Cat(RelProp):
    def forward(self, inputs, dim):
        self.__setattr__('dim', dim)
        return torch.cat(inputs, dim)

    def relprop(self, R, alpha):
        Z = self.forward(self.X, self.dim)
        S = safe_divide(R, Z)
        C = self.gradprop(Z, self.X, S)

        outputs = []
        for x, c in zip(self.X, C):
            outputs.append(x * c)

        return outputs


class Sequential(nn.Sequential):
    def relprop(self, R, alpha):
        for m in reversed(self._modules.values()):
            R = m.relprop(R, alpha)
        return R

class BatchNorm2d(nn.BatchNorm2d, RelProp):
    def relprop(self, R, alpha):
        X = self.X
        beta = 1 - alpha
        weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3) / (
            (self.running_var.unsqueeze(0).unsqueeze(2).unsqueeze(3).pow(2) + self.eps).pow(0.5))
        Z = X * weight + 1e-9
        S = R / Z
        Ca = S * weight
        R = self.X * (Ca)
        return R


class Linear(nn.Linear, RelProp):
    def relprop(self, R, alpha):
        beta = alpha - 1
        pw = torch.clamp(self.weight, min=0)
        nw = torch.clamp(self.weight, max=0)
        px = torch.clamp(self.X, min=0)
        nx = torch.clamp(self.X, max=0)

        def f(w1, w2, x1, x2):
            Z1 = F.linear(x1, w1)
            Z2 = F.linear(x2, w2)
            S1 = safe_divide(R, Z1 + Z2)
            S2 = safe_divide(R, Z1 + Z2)
            C1 = x1 * torch.autograd.grad(Z1, x1, S1)[0]
            C2 = x2 * torch.autograd.grad(Z2, x2, S2)[0]

            return C1 + C2

        activator_relevances = f(pw, nw, px, nx)
        inhibitor_relevances = f(nw, pw, px, nx)

        R = alpha * activator_relevances - beta * inhibitor_relevances

        return R


class Conv2d(nn.Conv2d, RelProp):
    def gradprop2(self, DY, weight):
        Z = self.forward(self.X)

        output_padding = self.X.size()[2] - (
                (Z.size()[2] - 1) * self.stride[0] - 2 * self.padding[0] + self.kernel_size[0])

        return F.conv_transpose2d(DY, weight, stride=self.stride, padding=self.padding, output_padding=output_padding)

    def relprop(self, R, alpha):
        if self.X.shape[1] == 3:
            pw = torch.clamp(self.weight, min=0)
            nw = torch.clamp(self.weight, max=0)
            X = self.X
            L = self.X * 0 + \
                torch.min(torch.min(torch.min(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
                          keepdim=True)[0]
            H = self.X * 0 + \
                torch.max(torch.max(torch.max(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
                          keepdim=True)[0]
            Za = torch.conv2d(X, self.weight, bias=None, stride=self.stride, padding=self.padding) - \
                 torch.conv2d(L, pw, bias=None, stride=self.stride, padding=self.padding) - \
                 torch.conv2d(H, nw, bias=None, stride=self.stride, padding=self.padding) + 1e-9

            S = R / Za
            C = X * self.gradprop2(S, self.weight) - L * self.gradprop2(S, pw) - H * self.gradprop2(S, nw)
            R = C
        else:
            beta = alpha - 1
            pw = torch.clamp(self.weight, min=0)
            nw = torch.clamp(self.weight, max=0)
            px = torch.clamp(self.X, min=0)
            nx = torch.clamp(self.X, max=0)

            def f(w1, w2, x1, x2):
                Z1 = F.conv2d(x1, w1, bias=None, stride=self.stride, padding=self.padding)
                Z2 = F.conv2d(x2, w2, bias=None, stride=self.stride, padding=self.padding)
                S1 = safe_divide(R, Z1)
                S2 = safe_divide(R, Z2)
                C1 = x1 * self.gradprop(Z1, x1, S1)[0]
                C2 = x2 * self.gradprop(Z2, x2, S2)[0]
                return C1 + C2

            activator_relevances = f(pw, nw, px, nx)
            inhibitor_relevances = f(nw, pw, px, nx)

            R = alpha * activator_relevances - beta * inhibitor_relevances
        return R