|
""" Vision Transformer (ViT) in PyTorch |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from .layers import * |
|
import math |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
'vit_small_patch16_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', |
|
), |
|
'vit_base_patch16_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
), |
|
'vit_large_patch16_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), |
|
} |
|
|
|
def compute_rollout_attention(all_layer_matrices, start_layer=0): |
|
|
|
num_tokens = all_layer_matrices[0].shape[1] |
|
batch_size = all_layer_matrices[0].shape[0] |
|
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device) |
|
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))] |
|
|
|
|
|
joint_attention = all_layer_matrices[start_layer] |
|
for i in range(start_layer+1, len(all_layer_matrices)): |
|
joint_attention = all_layer_matrices[i].bmm(joint_attention) |
|
return joint_attention |
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = Linear(in_features, hidden_features) |
|
self.act = GELU() |
|
self.fc2 = Linear(hidden_features, out_features) |
|
self.drop = Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
def relprop(self, cam, **kwargs): |
|
cam = self.drop.relprop(cam, **kwargs) |
|
cam = self.fc2.relprop(cam, **kwargs) |
|
cam = self.act.relprop(cam, **kwargs) |
|
cam = self.fc1.relprop(cam, **kwargs) |
|
return cam |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = head_dim ** -0.5 |
|
|
|
|
|
self.matmul1 = einsum('bhid,bhjd->bhij') |
|
|
|
self.matmul2 = einsum('bhij,bhjd->bhid') |
|
|
|
self.qkv = Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = Dropout(attn_drop) |
|
self.proj = Linear(dim, dim) |
|
self.proj_drop = Dropout(proj_drop) |
|
self.softmax = Softmax(dim=-1) |
|
|
|
self.attn_cam = None |
|
self.attn = None |
|
self.v = None |
|
self.v_cam = None |
|
self.attn_gradients = None |
|
|
|
def get_attn(self): |
|
return self.attn |
|
|
|
def save_attn(self, attn): |
|
self.attn = attn |
|
|
|
def save_attn_cam(self, cam): |
|
self.attn_cam = cam |
|
|
|
def get_attn_cam(self): |
|
return self.attn_cam |
|
|
|
def get_v(self): |
|
return self.v |
|
|
|
def save_v(self, v): |
|
self.v = v |
|
|
|
def save_v_cam(self, cam): |
|
self.v_cam = cam |
|
|
|
def get_v_cam(self): |
|
return self.v_cam |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def forward(self, x): |
|
b, n, _, h = *x.shape, self.num_heads |
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h) |
|
|
|
self.save_v(v) |
|
|
|
dots = self.matmul1([q, k]) * self.scale |
|
|
|
attn = self.softmax(dots) |
|
attn = self.attn_drop(attn) |
|
|
|
|
|
if False: |
|
from os import path |
|
if not path.exists('att_1.pt'): |
|
torch.save(attn, 'att_1.pt') |
|
elif not path.exists('att_2.pt'): |
|
torch.save(attn, 'att_2.pt') |
|
else: |
|
torch.save(attn, 'att_3.pt') |
|
|
|
|
|
if x.requires_grad: |
|
self.save_attn(attn) |
|
attn.register_hook(self.save_attn_gradients) |
|
|
|
out = self.matmul2([attn, v]) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
|
|
out = self.proj(out) |
|
out = self.proj_drop(out) |
|
return out |
|
|
|
def relprop(self, cam, **kwargs): |
|
cam = self.proj_drop.relprop(cam, **kwargs) |
|
cam = self.proj.relprop(cam, **kwargs) |
|
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads) |
|
|
|
|
|
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs) |
|
cam1 /= 2 |
|
cam_v /= 2 |
|
|
|
self.save_v_cam(cam_v) |
|
self.save_attn_cam(cam1) |
|
|
|
cam1 = self.attn_drop.relprop(cam1, **kwargs) |
|
cam1 = self.softmax.relprop(cam1, **kwargs) |
|
|
|
|
|
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs) |
|
cam_q /= 2 |
|
cam_k /= 2 |
|
|
|
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads) |
|
|
|
return self.qkv.relprop(cam_qkv, **kwargs) |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.): |
|
super().__init__() |
|
self.norm1 = LayerNorm(dim, eps=1e-6) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) |
|
self.norm2 = LayerNorm(dim, eps=1e-6) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) |
|
|
|
self.add1 = Add() |
|
self.add2 = Add() |
|
self.clone1 = Clone() |
|
self.clone2 = Clone() |
|
|
|
def forward(self, x): |
|
x1, x2 = self.clone1(x, 2) |
|
x = self.add1([x1, self.attn(self.norm1(x2))]) |
|
x1, x2 = self.clone2(x, 2) |
|
x = self.add2([x1, self.mlp(self.norm2(x2))]) |
|
return x |
|
|
|
def relprop(self, cam, **kwargs): |
|
(cam1, cam2) = self.add2.relprop(cam, **kwargs) |
|
cam2 = self.mlp.relprop(cam2, **kwargs) |
|
cam2 = self.norm2.relprop(cam2, **kwargs) |
|
cam = self.clone2.relprop((cam1, cam2), **kwargs) |
|
|
|
(cam1, cam2) = self.add1.relprop(cam, **kwargs) |
|
cam2 = self.attn.relprop(cam2, **kwargs) |
|
cam2 = self.norm1.relprop(cam2, **kwargs) |
|
cam = self.clone1.relprop((cam1, cam2), **kwargs) |
|
return cam |
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, num_classes=2, embed_dim=64, depth=3, |
|
num_heads=8, mlp_ratio=2., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, |
|
drop=drop_rate, attn_drop=attn_drop_rate) |
|
for i in range(depth)]) |
|
|
|
self.norm = LayerNorm(embed_dim) |
|
if mlp_head: |
|
|
|
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes) |
|
else: |
|
|
|
self.head = Linear(embed_dim, num_classes) |
|
|
|
|
|
|
|
self.pool = IndexSelect() |
|
self.add = Add() |
|
|
|
self.inp_grad = None |
|
|
|
def save_inp_grad(self,grad): |
|
self.inp_grad = grad |
|
|
|
def get_inp_grad(self): |
|
return self.inp_grad |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@property |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def forward(self, x): |
|
if x.requires_grad: |
|
x.register_hook(self.save_inp_grad) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
x = self.norm(x) |
|
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device)) |
|
x = x.squeeze(1) |
|
x = self.head(x) |
|
return x |
|
|
|
def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs): |
|
|
|
|
|
cam = self.head.relprop(cam, **kwargs) |
|
cam = cam.unsqueeze(1) |
|
cam = self.pool.relprop(cam, **kwargs) |
|
cam = self.norm.relprop(cam, **kwargs) |
|
for blk in reversed(self.blocks): |
|
cam = blk.relprop(cam, **kwargs) |
|
|
|
|
|
|
|
|
|
if method == "full": |
|
(cam, _) = self.add.relprop(cam, **kwargs) |
|
cam = cam[:, 1:] |
|
cam = self.patch_embed.relprop(cam, **kwargs) |
|
|
|
cam = cam.sum(dim=1) |
|
return cam |
|
|
|
elif method == "rollout": |
|
|
|
attn_cams = [] |
|
for blk in self.blocks: |
|
attn_heads = blk.attn.get_attn_cam().clamp(min=0) |
|
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() |
|
attn_cams.append(avg_heads) |
|
cam = compute_rollout_attention(attn_cams, start_layer=start_layer) |
|
cam = cam[:, 0, 1:] |
|
return cam |
|
|
|
|
|
elif method == "transformer_attribution" or method == "grad": |
|
cams = [] |
|
for blk in self.blocks: |
|
grad = blk.attn.get_attn_gradients() |
|
cam = blk.attn.get_attn_cam() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cams.append(cam.unsqueeze(0)) |
|
rollout = compute_rollout_attention(cams, start_layer=start_layer) |
|
cam = rollout[:, 0, 1:] |
|
return cam |
|
|
|
elif method == "last_layer": |
|
cam = self.blocks[-1].attn.get_attn_cam() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
if is_ablation: |
|
grad = self.blocks[-1].attn.get_attn_gradients() |
|
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cam = cam[0, 1:] |
|
return cam |
|
|
|
elif method == "last_layer_attn": |
|
cam = self.blocks[-1].attn.get_attn() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cam = cam[0, 1:] |
|
return cam |
|
|
|
elif method == "second_layer": |
|
cam = self.blocks[1].attn.get_attn_cam() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
if is_ablation: |
|
grad = self.blocks[1].attn.get_attn_gradients() |
|
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cam = cam[0, 1:] |
|
return cam |