Spaces:
Runtime error
Runtime error
File size: 10,591 Bytes
54660f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from __future__ import absolute_import, division, print_function
import os
import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms
import torchvision.models as models
from feature_extractor import cl
from models.GraphTransformer import Classifier
from models.weight_init import weight_init
from feature_extractor.build_graph_utils import ToTensor, Compose, bag_dataset, adj_matrix
import torchvision.transforms.functional as VF
from src.vis_graphcam import show_cam_on_image,cam_to_mask
from easydict import EasyDict as edict
from models.GraphTransformer import Classifier
from slide_tiling import save_tiles
import pickle
from collections import OrderedDict
import glob
import openslide
import numpy as np
import skimage.transform
import cv2
class Predictor:
def __init__(self):
self.classdict = pickle.load(open(os.environ['CLASS_METADATA'], 'rb' ))
self.label_map_inv = dict()
for label_name, label_id in self.classdict.items():
self.label_map_inv[label_id] = label_name
iclf_weights = os.environ['FEATURE_EXTRACTOR_WEIGHT_PATH']
graph_transformer_weights = os.environ['GT_WEIGHT_PATH']
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.__init_iclf(iclf_weights, backbone='resnet18')
self.__init_graph_transformer(graph_transformer_weights)
def predict(self, slide_path):
# get tiles for a given WSI slide
save_tiles(slide_path)
filename = os.path.basename(slide_path)
FILEID = filename.rsplit('.', maxsplit=1)[0]
patches_glob_path = os.path.join(os.environ['PATCHES_DIR'], f'{FILEID}_files', '*', '*.jpeg')
patches_paths = glob.glob(patches_glob_path)
sample = self.iclf_predict(patches_paths)
torch.set_grad_enabled(True)
node_feat, adjs, masks = Predictor.preparefeatureLabel(sample['image'], sample['adj_s'], self.device)
pred,labels,loss,graphcam_tensors = self.model.forward(node_feat=node_feat, labels=None, adj=adjs, mask=masks, graphcam_flag=True, to_file=False)
patches_coords = sample['c_idx'][0]
viz_dict = self.get_graphcams(graphcam_tensors, patches_coords, slide_path, FILEID)
return self.label_map_inv[pred.item()], viz_dict
def iclf_predict(self, patches_paths):
feats_list = []
batch_size = 128
num_workers = 0
args = edict({'batch_size':batch_size, 'num_workers':num_workers} )
dataloader, bag_size = bag_dataset(args, patches_paths)
with torch.no_grad():
for iteration, batch in enumerate(dataloader):
patches = batch['input'].float().to(self.device)
feats, classes = self.i_classifier(patches)
#feats = feats.cpu().numpy()
feats_list.extend(feats)
output = torch.stack(feats_list, dim=0).to(self.device)
# save adjacent matrix
adj_s = adj_matrix(patches_paths, output)
patch_infos = []
for path in patches_paths:
x, y = path.split('/')[-1].split('.')[0].split('_')
patch_infos.append((x,y))
preds = {'image': [output],
'adj_s': [adj_s],
'c_idx': [patch_infos]}
return preds
def get_graphcams(self, graphcam_tensors, patches_coords, slide_path, FILEID):
label_map = self.classdict
label_name_from_id = self.label_map_inv
n_class = len(label_map)
p = graphcam_tensors['prob'].cpu().detach().numpy()[0]
ori = openslide.OpenSlide(slide_path)
width, height = ori.dimensions
REDUCTION_FACTOR = 20
w, h = int(width/512), int(height/512)
w_r, h_r = int(width/20), int(height/20)
resized_img = ori.get_thumbnail((width,height))#ori.get_thumbnail((w_r,h_r))
resized_img = resized_img.resize((w_r,h_r))
ratio_w, ratio_h = width/resized_img.width, height/resized_img.height
#print('ratios ', ratio_w, ratio_h)
w_s, h_s = float(512/REDUCTION_FACTOR), float(512/REDUCTION_FACTOR)
patches = []
xmax, ymax = 0, 0
for patch_coords in patches_coords:
x, y = patch_coords
if xmax < int(x): xmax = int(x)
if ymax < int(y): ymax = int(y)
patches.append('{}_{}.jpeg'.format(x,y))
output_img = np.asarray(resized_img)[:,:,::-1].copy()
#-----------------------------------------------------------------------------------------------------#
# GraphCAM
#print('visulize GraphCAM')
assign_matrix = graphcam_tensors['s_matrix_ori']
m = nn.Softmax(dim=1)
assign_matrix = m(assign_matrix)
# Thresholding for better visualization
p = np.clip(p, 0.4, 1)
output_img_copy =np.copy(output_img)
gray = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
image_transformer_attribution = (output_img_copy - output_img_copy.min()) / (output_img_copy.max() - output_img_copy.min())
cam_matrices = []
masks = []
visualizations = []
viz_dict = dict()
SAMPLE_VIZ_DIR = os.path.join(os.environ['GRAPHCAM_DIR'],
FILEID)
os.makedirs(SAMPLE_VIZ_DIR, exist_ok=True)
for class_i in range(n_class):
# Load graphcam for each class
cam_matrix = graphcam_tensors[f'cam_{class_i}']
cam_matrix = torch.mm(assign_matrix, cam_matrix.transpose(1,0))
cam_matrix = cam_matrix.cpu()
# Normalize the graphcam
cam_matrix = (cam_matrix - cam_matrix.min()) / (cam_matrix.max() - cam_matrix.min())
cam_matrix = cam_matrix.detach().numpy()
cam_matrix = p[class_i] * cam_matrix
cam_matrix = np.clip(cam_matrix, 0, 1)
mask = cam_to_mask(gray, patches, cam_matrix, w, h, w_s, h_s)
vis = show_cam_on_image(image_transformer_attribution, mask)
vis = np.uint8(255 * vis)
cam_matrices.append(cam_matrix)
masks.append(mask)
visualizations.append(vis)
viz_dict['{}'.format(label_name_from_id[class_i]) ] = vis
cv2.imwrite(os.path.join(
SAMPLE_VIZ_DIR,
'{}_all_types_cam_{}.png'.format(FILEID, label_name_from_id[class_i] )
), vis)
h, w, _ = output_img.shape
if h > w:
vis_merge = cv2.hconcat([output_img] + visualizations)
else:
vis_merge = cv2.vconcat([output_img] + visualizations)
cv2.imwrite(os.path.join(
SAMPLE_VIZ_DIR,
'{}_all_types_cam_all.png'.format(FILEID)),
vis_merge)
viz_dict['ALL'] = vis_merge
cv2.imwrite(os.path.join(
SAMPLE_VIZ_DIR,
'{}_all_types_ori.png'.format(FILEID )
),
output_img)
viz_dict['ORI'] = output_img
return viz_dict
def preparefeatureLabel(batch_graph, batch_adjs, device='cpu'):
batch_size = len(batch_graph)
max_node_num = 0
for i in range(batch_size):
max_node_num = max(max_node_num, batch_graph[i].shape[0])
masks = torch.zeros(batch_size, max_node_num)
adjs = torch.zeros(batch_size, max_node_num, max_node_num)
batch_node_feat = torch.zeros(batch_size, max_node_num, 512)
for i in range(batch_size):
cur_node_num = batch_graph[i].shape[0]
#node attribute feature
tmp_node_fea = batch_graph[i]
batch_node_feat[i, 0:cur_node_num] = tmp_node_fea
#adjs
adjs[i, 0:cur_node_num, 0:cur_node_num] = batch_adjs[i]
#masks
masks[i,0:cur_node_num] = 1
node_feat = batch_node_feat.to()
adjs = adjs.to(device)
masks = masks.to(device)
return node_feat, adjs, masks
def __init_graph_transformer(self, graph_transformer_weights):
n_class = len(self.classdict)
model = Classifier(n_class)
model = nn.DataParallel(model)
model.load_state_dict(torch.load(graph_transformer_weights,
map_location=torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) ))
if torch.cuda.is_available():
model = model.cuda()
self.model = model
def __init_iclf(self, iclf_weights, backbone='resnet18'):
if backbone == 'resnet18':
resnet = models.resnet18(pretrained=False, norm_layer=nn.InstanceNorm2d)
num_feats = 512
if backbone == 'resnet34':
resnet = models.resnet34(pretrained=False, norm_layer=nn.InstanceNorm2d)
num_feats = 512
if backbone == 'resnet50':
resnet = models.resnet50(pretrained=False, norm_layer=nn.InstanceNorm2d)
num_feats = 2048
if backbone == 'resnet101':
resnet = models.resnet101(pretrained=False, norm_layer=nn.InstanceNorm2d)
num_feats = 2048
for param in resnet.parameters():
param.requires_grad = False
resnet.fc = nn.Identity()
i_classifier = cl.IClassifier(resnet, num_feats, output_class=2).to(self.device)
# load feature extractor
state_dict_weights = torch.load(iclf_weights, map_location=torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ))
state_dict_init = i_classifier.state_dict()
new_state_dict = OrderedDict()
for (k, v), (k_0, v_0) in zip(state_dict_weights.items(), state_dict_init.items()):
if 'features' not in k:
continue
name = k_0
new_state_dict[name] = v
i_classifier.load_state_dict(new_state_dict, strict=False)
self.i_classifier = i_classifier
#0 load metadata dicitonary for class names
#1 TILE THE IMAGE
#2 FEED IT TO FEATURE EXTRACTOR
#3 PRODUCE GRAPH
#4 predict graphcams
import subprocess
import argparse
import os
import shutil
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Classification')
parser.add_argument('--slide_path', type=str, help='path to the WSI slide')
args = parser.parse_args()
predictor = Predictor()
predicted_class, viz_dict = predictor.predict(args.slide_path)
print('Class prediction is: ', predicted_class)
|