Chris4K's picture
Create app.py
ccb8edf verified
raw
history blame
4.33 kB
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTextSplitter
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
from nltk import sent_tokenize
from typing import List, Tuple
from transformers import AutoModel, AutoTokenizer
# Ensure nltk sentence tokenizer is downloaded
nltk.download('punkt')
FILES_DIR = './files'
# Supported embedding models
MODELS = {
'e5-base': "danielheinz/e5-base-sts-en-de",
'multilingual-e5-base': "multilingual-e5-base",
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
'gte-large': "gte-large",
'gbert-base': "gbert-base"
}
class FileHandler:
@staticmethod
def extract_text(file_path):
ext = os.path.splitext(file_path)[-1].lower()
if ext == '.pdf':
return FileHandler._extract_from_pdf(file_path)
elif ext == '.docx':
return FileHandler._extract_from_docx(file_path)
elif ext == '.txt':
return FileHandler._extract_from_txt(file_path)
else:
raise ValueError(f"Unsupported file type: {ext}")
@staticmethod
def _extract_from_pdf(file_path):
with pdfplumber.open(file_path) as pdf:
return ' '.join([page.extract_text() for page in pdf.pages])
@staticmethod
def _extract_from_docx(file_path):
doc = docx.Document(file_path)
return ' '.join([para.text for para in doc.paragraphs])
@staticmethod
def _extract_from_txt(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
class EmbeddingModel:
def __init__(self, model_name, max_tokens=None):
self.model = HuggingFaceEmbeddings(model_name=model_name)
self.max_tokens = max_tokens
def embed(self, text):
return self.model.embed_documents([text])
def process_files(model_name, split_strategy, chunk_size=500, overlap_size=50, max_tokens=None):
# File processing
text = ""
for file in os.listdir(FILES_DIR):
file_path = os.path.join(FILES_DIR, file)
text += FileHandler.extract_text(file_path)
# Split text
if split_strategy == 'sentence':
splitter = SentenceTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
else:
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
chunks = splitter.split_text(text)
model = EmbeddingModel(MODELS[model_name], max_tokens=max_tokens)
embeddings = model.embed(text)
return embeddings, chunks
def search_embeddings(query, model_name, top_k):
model = HuggingFaceEmbeddings(model_name=MODELS[model_name])
embeddings = model.embed_query(query)
return embeddings
def calculate_statistics(embeddings):
# Return time taken, token count, etc.
return {"tokens": len(embeddings), "time_taken": time.time()}
# Gradio frontend
def upload_file(file, model_name, split_strategy, chunk_size, overlap_size, max_tokens, query, top_k):
with open(os.path.join(FILES_DIR, file.name), "wb") as f:
f.write(file.read())
# Process files and get embeddings
embeddings, chunks = process_files(model_name, split_strategy, chunk_size, overlap_size, max_tokens)
# Perform search
results = search_embeddings(query, model_name, top_k)
# Calculate statistics
stats = calculate_statistics(embeddings)
return {"results": results, "stats": stats}
# Gradio interface
iface = gr.Interface(
fn=upload_file,
inputs=[
gr.File(label="Upload File"),
gr.Dropdown(choices=list(MODELS.keys()), label="Embedding Model"),
gr.Radio(choices=["sentence", "recursive"], label="Split Strategy"),
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
gr.Slider(50, 500, step=50, value=200, label="Max Tokens"),
gr.Textbox(label="Search Query"),
gr.Slider(1, 10, step=1, value=5, label="Top K")
],
outputs="json"
)
iface.launch()