|
import requests |
|
import os |
|
|
|
|
|
|
|
from fastapi import FastAPI |
|
|
|
app = FastAPI() |
|
|
|
class HuggingFaceAPI: |
|
def __init__(self, token): |
|
self.token = token |
|
|
|
def send_request(self, url, method, body): |
|
headers = { |
|
"Authorization": f"Bearer {self.token}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
if method == "GET": |
|
response = requests.get(url, headers=headers) |
|
elif method == "POST": |
|
response = requests.post(url, headers=headers, json=body) |
|
else: |
|
raise ValueError(f"Unsupported HTTP method: {method}") |
|
|
|
response.raise_for_status() |
|
return response.json() |
|
|
|
def text_translation(self, text, target_language): |
|
source_language = self.language_detection(text) |
|
url = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-"+source_language+"-"+target_language |
|
method = "POST" |
|
body = { |
|
"inputs": text |
|
} |
|
return self.send_request(url, method, body) |
|
|
|
|
|
def text_translation(self, text, source_language, target_language): |
|
|
|
url = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-"+source_language+"-"+target_language |
|
method = "POST" |
|
body = { |
|
"inputs": text |
|
} |
|
return self.send_request(url, method, body) |
|
|
|
def language_detection(self, text): |
|
url = "https://api-inference.huggingface.co/models/papluca/xlm-roberta-base-language-detection" |
|
method = "POST" |
|
body = { |
|
"inputs": text |
|
} |
|
return self.send_request(url, method, body) |
|
|
|
|
|
|
|
@app.post("/hf-inference/language_detection") |
|
async def language_detection_api(text: str): |
|
language_detection_response = api.language_detection(text) |
|
return language_detection_response |
|
|
|
@app.post("/hf-inference/text_translation") |
|
async def text_translation_api(text: str, source_language:str, target_language: str): |
|
text_translation_response = api.text_translation(text, source_language, target_language) |
|
return text_translation_response |
|
|
|
@app.post("/hf-inference/text_translation") |
|
async def text_translation_api(text: str, target_language: str): |
|
text_translation_response = api.text_translation(text, target_language) |
|
return text_translation_response |
|
|
|
|
|
|
|
api = HuggingFaceAPI( os.environ.get("hf_api_key") ) |
|
|
|
|
|
def hf_inference_translate(prompt="Wie kann ich Ihnen helfen?", target_language="en"): |
|
print(prompt) |
|
|
|
|
|
chat_response_languagedetected = "" |
|
chat_response_languagedetected = api.language_detection(text) |
|
print(chat_response_languagedetected[0][0]) |
|
|
|
text_translation_response = api.text_translation(prompt, chat_response_languagedetected[0][0]['label'], target_language) |
|
print(text_translation_response) |
|
|
|
label_scores = {entry['label']: entry['score'] for entry in chat_response_languagedetected[0][:3]} |
|
print(label_scores) |
|
|
|
return text_translation_response[0]['translation_text'],label_scores |
|
|
|
text = "Hallo, ich bin Christof. Wie geht es dir?" |
|
|
|
translation_response = hf_inference_translate(text, "en") |
|
print(translation_response) |
|
|
|
|
|
|
|
import gradio as gr |
|
import requests |
|
|
|
|
|
iface = gr.Interface( |
|
fn=hf_inference_translate, |
|
inputs=[ |
|
gr.inputs.Textbox(label="Input", lines=5, placeholder="Enter text to translate"), |
|
gr.inputs.Dropdown(["en", "fr", "de", "es", "ch", "ru"], label="Select target language") |
|
], |
|
outputs=[ |
|
gr.outputs.Textbox(label="Translated text"), |
|
gr.outputs.Label(label="Detected languages", num_top_classes=3) |
|
], |
|
title="🧐 Translation Interface", |
|
description="Type something in any language below and then click Run to see the output in the chosen target language.", |
|
examples=[["Wie geht es Dir?", "fr"], ["Do you need help?", "de"]], |
|
article="## Text Examples", |
|
article_description="Use examples", |
|
|
|
debug=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
iface.queue(concurrency_count=3) |
|
|
|
|
|
iface.launch(debug=True) |
|
|
|
|
|
|
|
|