import requests import os #os.environ["hf_api_key"] = {hf_api_key} from fastapi import FastAPI app = FastAPI() class HuggingFaceAPI: def __init__(self, token): self.token = token def send_request(self, url, method, body): headers = { "Authorization": f"Bearer {self.token}", "Content-Type": "application/json" } if method == "GET": response = requests.get(url, headers=headers) elif method == "POST": response = requests.post(url, headers=headers, json=body) else: raise ValueError(f"Unsupported HTTP method: {method}") response.raise_for_status() return response.json() def text_translation(self, text, target_language): source_language = self.language_detection(text) url = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-"+source_language+"-"+target_language method = "POST" body = { "inputs": text } return self.send_request(url, method, body) def text_translation(self, text, source_language, target_language): #return "" url = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-"+source_language+"-"+target_language method = "POST" body = { "inputs": text } return self.send_request(url, method, body) def language_detection(self, text): url = "https://api-inference.huggingface.co/models/papluca/xlm-roberta-base-language-detection" method = "POST" body = { "inputs": text } return self.send_request(url, method, body) # ... existing API endpoints ... @app.post("/hf-inference/language_detection") async def language_detection_api(text: str): language_detection_response = api.language_detection(text) return language_detection_response @app.post("/hf-inference/text_translation") async def text_translation_api(text: str, source_language:str, target_language: str): text_translation_response = api.text_translation(text, source_language, target_language) return text_translation_response @app.post("/hf-inference/text_translation") async def text_translation_api(text: str, target_language: str): text_translation_response = api.text_translation(text, target_language) return text_translation_response ### ENd of Fast API endpoints api = HuggingFaceAPI( os.environ.get("hf_api_key") ) # Define the function to be called when inputs are provided def hf_inference_translate(prompt="Wie kann ich Ihnen helfen?", target_language="en"): print(prompt) # Call the respective API methods # Get the input language chat_response_languagedetected = api.language_detection(text) print(chat_response_languagedetected[0][0]) # Translate based on input prompt, detected language and chosen target language text_translation_response = api.text_translation(prompt, chat_response_languagedetected[0][0]['label'], target_language) print(text_translation_response) # Extract the labels and scores from the result label_scores = {entry['label']: entry['score'] for entry in chat_response_languagedetected[0][:3]} print(label_scores) # Return the API responses # return text_translation_response[0]['translation_text'],label_scores text = "Hallo, ich bin Christof. Wie geht es dir?" #text = "Меня зовут Вольфганг и я живу в Берлине" translation_response = hf_inference_translate(text, "en") print(translation_response) import gradio as gr import requests iface = gr.Interface( fn=hf_inference_translate, inputs=[ gr.inputs.Textbox(label="Input", lines=5, placeholder="Enter text to translate"), gr.inputs.Dropdown(["en", "fr", "de", "es", "ch", "ru"], label="Select target language") ], outputs=[ gr.outputs.Textbox(label="Translated text"), gr.outputs.Label(label="Detected languages", num_top_classes=3) ], title="Translation Interface", description="Type something in any language below and then click Run to see the output in the chosen target language.", examples=[["Wie geht es Dir?", "fr"], ["Do you need help?", "de"]], article="## Text Examples", article_description="Use examples", #live=True, debug=True ) # Create a Gradio interface #queue iface.queue(concurrency_count=3) # Run the Gradio interface #iface.launch(share=True) iface.launch(share=True, debug=True)