Chris4K commited on
Commit
d81dc00
1 Parent(s): 14a437a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -31
app.py CHANGED
@@ -7,14 +7,7 @@
7
 
8
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
9
  from langchain.llms import HuggingFaceHub
10
- model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"
11
-
12
- ###### other models:
13
- # "Trelis/Llama-2-7b-chat-hf-sharded-bf16"
14
- # "bn22/Mistral-7B-Instruct-v0.1-sharded"
15
- # "HuggingFaceH4/zephyr-7b-beta"
16
-
17
- # function for loading 4-bit quantized model
18
  def load_model(model_name: str):
19
 
20
  model = HuggingFaceHub(
@@ -22,23 +15,7 @@ def load_model(model_name: str):
22
  model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0},
23
  )
24
 
25
- """
26
- :param model_name: Name or path of the model to be loaded.
27
- :return: Loaded quantized model.
28
-
29
- bnb_config = BitsAndBytesConfig(
30
- load_in_4bit=True,
31
- bnb_4bit_use_double_quant=True,
32
- bnb_4bit_quant_type="nf4",
33
- bnb_4bit_compute_dtype=torch.bfloat16
34
- )
35
-
36
- model = AutoModelForCausalLM.from_pretrained(
37
- model_name,
38
- load_in_4bit=True,
39
- torch_dtype=torch.bfloat16,
40
- quantization_config=bnb_config
41
- )"""
42
  return model
43
 
44
  ##################################################
@@ -51,8 +28,7 @@ from langchain_core.messages import AIMessage, HumanMessage
51
  from langchain_community.document_loaders import WebBaseLoader
52
  from langchain.text_splitter import RecursiveCharacterTextSplitter
53
  from langchain_community.vectorstores import Chroma
54
-
55
- #from langchain_openai import OpenAIEmbeddings, ChatOpenAI
56
  from langchain.embeddings import HuggingFaceBgeEmbeddings
57
  from langchain.vectorstores.faiss import FAISS
58
 
@@ -67,8 +43,8 @@ load_dotenv()
67
 
68
  from langchain_community.document_loaders import TextLoader
69
 
70
- def load_txt():
71
- loader = TextLoader("./a.cv.ckaller.2024.txt")
72
  document = loader.load()
73
  # split the document into chunks
74
  text_splitter = RecursiveCharacterTextSplitter()
@@ -100,7 +76,7 @@ def load_txt():
100
  return vector_store
101
 
102
 
103
- def get_vectorstore_from_url(url):
104
  # get the text in document form
105
  loader = WebBaseLoader(url)
106
  document = loader.load()
@@ -216,7 +192,7 @@ def get_response(user_input):
216
 
217
 
218
  #vs = get_vectorstore_from_url(user_url, all_domain)
219
- vs = get_vectorstore_from_url("https://huggingface.co/Chris4K")
220
  # print("------ here 22 " )
221
  chat_history =[]
222
  retriever_chain = get_context_retriever_chain(vs)
@@ -248,6 +224,7 @@ def get_response(message, history):
248
  dialog = history_to_dialog_format(history)
249
  dialog.append({"role": "user", "content": message})
250
 
 
251
  # Define the prompt as a ChatPromptValue object
252
  #user_input = ChatPromptValue(user_input)
253
 
 
7
 
8
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
9
  from langchain.llms import HuggingFaceHub
10
+
 
 
 
 
 
 
 
11
  def load_model(model_name: str):
12
 
13
  model = HuggingFaceHub(
 
15
  model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0},
16
  )
17
 
18
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  return model
20
 
21
  ##################################################
 
28
  from langchain_community.document_loaders import WebBaseLoader
29
  from langchain.text_splitter import RecursiveCharacterTextSplitter
30
  from langchain_community.vectorstores import Chroma
31
+
 
32
  from langchain.embeddings import HuggingFaceBgeEmbeddings
33
  from langchain.vectorstores.faiss import FAISS
34
 
 
43
 
44
  from langchain_community.document_loaders import TextLoader
45
 
46
+ def load_txt(path="./a.cv.ckaller.2024.txt"):
47
+ loader = TextLoader(path)
48
  document = loader.load()
49
  # split the document into chunks
50
  text_splitter = RecursiveCharacterTextSplitter()
 
76
  return vector_store
77
 
78
 
79
+ def get_vectorstore_from_url(url="https://huggingface.co/Chris4K"):
80
  # get the text in document form
81
  loader = WebBaseLoader(url)
82
  document = loader.load()
 
192
 
193
 
194
  #vs = get_vectorstore_from_url(user_url, all_domain)
195
+ vs = get_vectorstore_from_url()
196
  # print("------ here 22 " )
197
  chat_history =[]
198
  retriever_chain = get_context_retriever_chain(vs)
 
224
  dialog = history_to_dialog_format(history)
225
  dialog.append({"role": "user", "content": message})
226
 
227
+ print(dialog)
228
  # Define the prompt as a ChatPromptValue object
229
  #user_input = ChatPromptValue(user_input)
230