File size: 2,319 Bytes
1fad4a0
ba1082d
28c8817
 
1fad4a0
e03f966
7846d6e
e03f966
 
 
 
 
 
 
 
 
 
7846d6e
eb9bba6
 
d44236e
eb9bba6
 
 
f275817
eb9bba6
 
 
ba1082d
58b75c9
eb9bba6
 
 
ba1082d
eb9bba6
 
 
 
faebf60
 
eb9bba6
 
 
 
 
 
 
 
58b75c9
eb9bba6
ba1082d
7846d6e
ba1082d
 
 
b43651d
7846d6e
ba1082d
b43651d
7846d6e
ba1082d
b43651d
7846d6e
 
 
e03f966
7846d6e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import requests
import os
from transformers import pipeline


from transformers import Tool
# Import other necessary libraries if needed

class TextGenerationTool(Tool):
    name = "text_generator"
    description = (
        "This is a tool for text generation. It takes a prompt as input and returns the generated text."
    )

    inputs = ["text"]
    outputs = ["text"]

    def __call__(self, prompt: str):
        #API_URL = "https://api-inference.huggingface.co/models/openchat/openchat_3.5"
        #headers = {"Authorization": "Bearer " +  os.environ['hf']}
        token=os.environ['hf']
        #payload = {
        #    "inputs": prompt  # Adjust this based on your model's input format
        #}

        #payload = {
        #            "inputs": "Can you please let us know more details about your ",
        #        }
        
        #def query(payload):
        #generated_text = requests.post(API_URL, headers=headers, json=payload).json()
        #print(generated_text)
        #return generated_text["text"]
            
        # Replace the following line with your text generation logic
        #generated_text = f"Generated text based on the prompt: '{prompt}'"

        # Initialize the text generation pipeline
        #text_generator = pipeline(model="lgaalves/gpt2-dolly", token=token)
        text_generator = pipeline(model="microsoft/Orca-2-13b", token=token)

        # Generate text based on a prompt
        generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7)

        # Print the generated text
        print(generated_text)



        return generated_text
        
        # Define the payload for the request
        #payload = {
        #    "inputs": prompt  # Adjust this based on your model's input format
        #}

        # Make the request to the API
        #generated_text = requests.post(API_URL, headers=headers, json=payload).json()

        # Extract and return the generated text
        #return generated_text["generated_text"]

# Uncomment and customize the following lines based on your text generation needs
# text_generator = pipeline(model="gpt2")
# generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7)

# Print the generated text if needed
# print(generated_text)