Spaces:
Sleeping
Sleeping
File size: 18,649 Bytes
c05d309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# CLASS:
# pre_process_image
# METHODS:
# __init__
# INPUT:
# image_dir = (str) a full path to an image with multiple beetles and possibly a size reference circle
# manual_thresh_buffer (float) {optional} this is a manual way to control the binarizxing threshold.
# use this when beetles are broken up into multiple images\
# inputs should range from -1 to 1. higehr vlaues include lighter colors into the blobs and lower values reduce blob size
# OUTPUT(ATTRIBUTES):
# image_dir = (str) the same directory as is given as an input to the iamge that is being processed
# image = (np.array) the original compound image
# grey_image = (np.array) the original compound image in greyscale
# bw_image = (np.array) the original image in binary black and white
# inv_bw_image = (np.array) the original image inverted black and white binary
# clear_inv_bw_image = (np.array) the inverted black and white binary original image with all components touching the border removed
# segment
# INPUT:
# cluster_num = (int) {default=2} the number of clusters used for kmeans to pick only the cluster with alrgest blobs
# image_edge_buffer = (int) {default=50} number of pixels to add to box borders
# OUTPUT(ATTRIBUTES):
# cluster_num = (int) the same as the input
# image_edge_buffer = (int) the same as the input
# labeled_image = (np.array) the original compound image that is labelled
# max_kmeans_label = (int) the label of the cluster with the largest object/blob
# image_selected_df = (pd.DataFrame) a dataframe with columns describing each segmented image:
# 'centroid' = centre of the image
# 'bbox-0' = border 0
# 'bbox-1' = border 1
# 'bbox-2' = border 2
# 'bbox-3' = border 3
# 'orientation' = angle of image segment
# 'axis_major_length'
# 'axis_minor_length'
# 'area'
# 'area_filled'
# image_properties_df = (pd.DataFrame) similar to the image_selected_df, but inlcudes all the artefacts that are picked up
# col_image_lst = (list) a list with all the segmented images in color
# inv_bw_image_lst = (list) a list with all the segmented images in inverted binary black and white
# image_segment_count = (int) number of segmented images extracted from the compound image
# detect_outlier
# INPUT:
# None
# OUTPUT(ATTRIBUTES):
# image_array = (np.array) an array of the list of color segemented images (number of images, (R,G,B))
# r_ar_lst = (list) a list of arrays with flattened images red values
# g_ar_lst = (list) a list of arrays with flattened images green values
# b_ar_lst = (list) a list of arrays with flattened images blue values
# all_ar_lst = (list) a list of arrays with flattened images all red, green, and blue values
# px_dens_dist = (np.array) frequency distribution at 0-255 of all the values for each pixel
# corr_coef = (np.array) a square array of length equal to the number of segmented images showing the spearman correlation bewteen images
# corr_pval = (np.array) the pvalues associatedwith each correlation
# corr_coef_sum = (np.array) the sum of the correlations across each iamge compared to all others
# outlier_idx = (int) the index of the image with the lowest spearman correlation sum
# outlier_val = (float) the lowest sum correlation value
# outlier_col_image = (np.array) the color image of what is detected as the outlier
# outlier_inv_bw_image = (np.array) the inverted black on white image of the outlier segmented image
# outlier_bw_image = (np.array) the white on black image of the outlier segmented image
# image_selected_df = (pd.DataFrame) an updated dataframe that contains the circle identification data
# estimate_size
# INPUT:
# known_radius = (int) {default=1} the radius of the reference circle (shoudl be approximately the same size as the specimens to work best)
# canny_sigma = (int) {default=5} this describes how strict the cleaning border is for identifying the circle to place over the reference circle
# outlier_idx = (int) {default should be self.outlier_idx} change this when the circle is falsely detected
# OUTPUT(ATTRIBUTES):
# outlier_bw_image = (np.array) an updated version of the outlier iamge with a clean circle clear of artifacts
# outlier_idx = (int) same as the input
# clean_inv_bw_image_lst = (list) a list of cleaned white on black images no blobs touching hte border
# image_selected_df = (pd.DataFrame) an update to the dataframe of metadata containing pixel counts and relative area in mm^2 of all segmented images
# *black and white is white on black
# import requirements
import os
os.environ["OMP_NUM_THREADS"] = '1' #use this line on windows machines to avoid memory leaks
import numpy as np
import pandas as pd
from math import ceil
from skimage import io
from skimage.filters import threshold_otsu
from skimage.color import rgb2gray
from skimage.segmentation import clear_border
from skimage.measure import label, regionprops_table
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.feature import canny
from skimage.draw import disk
from sklearn.cluster import KMeans
from scipy.stats import spearmanr
class pre_process_image:
# initialize image to be segmented from path
def __init__(self, image=None, image_dir=None, manual_thresh_buffer=0):
if image_dir is not None:
self.image_dir = image_dir.replace('\\','/') # full directory path to image
self.image = io.imread(image_dir) # read image from directory
elif image is not None:
self.image = image
else:
print("No image given to function")
self.grey_image = rgb2gray(self.image) #convert image to greyscale
self.bw_image = self.grey_image > threshold_otsu(self.grey_image) + manual_thresh_buffer # binarize image to be black & white
self.inv_bw_image = np.invert(self.bw_image) # invert black and white image
self.clear_inv_bw_image = clear_border(self.inv_bw_image) # remove anything touching image border
# segment the image into smaller images
def segment(self, cluster_num=2, image_edge_buffer=50):
self.cluster_num = cluster_num
self.image_edge_buffer = image_edge_buffer
self.labeled_image = label(self.clear_inv_bw_image) #label image
image_properties_df = pd.DataFrame( # get the properties of each image used to segment blobs in image
regionprops_table(
self.labeled_image,
properties=('centroid',
'bbox',
'orientation',
'axis_major_length',
'axis_minor_length',
'area',
'area_filled')
)
)
# cluster boxes of blobs by size
kmean_result = KMeans(n_clusters=cluster_num, n_init='auto').fit(
np.array(
image_properties_df[['axis_major_length', 'axis_minor_length']]
)
)
image_properties_df['kmeans_label'] = kmean_result.labels_
# keep only the largest cluster (ball bearing needs to be a similar size as the beetles)
self.max_kmeans_label = int(image_properties_df.kmeans_label[image_properties_df['area'] == image_properties_df['area'].max()])
image_selected_df = image_properties_df[image_properties_df['kmeans_label']==self.max_kmeans_label]
self.image_properties_df = image_properties_df
# enlarge the boxes around blobs with buffer
coord_df = image_selected_df.loc[:,['bbox-0','bbox-1','bbox-2','bbox-3']].copy()
coord_df = coord_df.reset_index(drop = True)
image_selected_df = image_selected_df.reset_index(drop = True)
coord_df.loc[:,['bbox-0','bbox-1']] = coord_df.loc[:,['bbox-0','bbox-1']]-self.image_edge_buffer
coord_df.loc[:,['bbox-2','bbox-3']] = coord_df.loc[:,['bbox-2','bbox-3']]+self.image_edge_buffer
image_selected_df.loc[:,['bbox-0','bbox-1','bbox-2','bbox-3']] = coord_df.loc[:,['bbox-0','bbox-1','bbox-2','bbox-3']]
# limit boundaries to the initial image size without this the iamge size bugs out when the boundaries are negative and it removes the image
mask = image_selected_df[['bbox-0','bbox-1','bbox-2','bbox-3']]>=0
image_selected_df[['bbox-0','bbox-1','bbox-2','bbox-3']] = image_selected_df[['bbox-0','bbox-1','bbox-2','bbox-3']].where(mask, other=0)
self.image_selected_df = image_selected_df
# crop blobs from image based on box sizes and add to list
col_image_lst = []
inv_bw_image_lst = []
for i in range(len(image_selected_df)):
coord_i = image_selected_df.iloc[i]
# color images
crop_img = self.image[int(coord_i['bbox-0']):int(coord_i['bbox-2']), int(coord_i['bbox-1']):int(coord_i['bbox-3'])]
col_image_lst.append(crop_img)
# inverted black and white images
crop_bw_img = self.inv_bw_image[int(coord_i['bbox-0']):int(coord_i['bbox-2']), int(coord_i['bbox-1']):int(coord_i['bbox-3'])]
inv_bw_image_lst.append(crop_bw_img)
#clear all images that are empty
# col_image_lst = [x for x in col_image_lst if x.shape[0] != 0]
# inv_bw_image_lst = [x for x in inv_bw_image_lst if x.shape[0] != 0]
self.col_image_lst = col_image_lst
self.inv_bw_image_lst = inv_bw_image_lst
self.image_segment_count = len(col_image_lst)
def detect_outlier(self):
# convert list to numpy array
self.image_array = np.copy(np.array(self.col_image_lst, dtype='object'))
# initialize lists to store data in
r_ar_lst = []
g_ar_lst = []
b_ar_lst = []
all_ar_lst = []
for l in range(self.image_segment_count):
# flatten arrays
img_var = self.image_array[l]
r_ar = img_var[:,:,0].flatten() # red
g_ar = img_var[:,:,1].flatten() # green
b_ar = img_var[:,:,2].flatten() # blue
all_ar = img_var.flatten() # all
# collect data in lists
r_ar_lst.append(r_ar)
g_ar_lst.append(g_ar)
b_ar_lst.append(b_ar)
all_ar_lst.append(all_ar)
self.r_ar_lst = r_ar_lst
self.g_ar_lst = g_ar_lst
self.b_ar_lst = b_ar_lst
self.all_ar_lst = all_ar_lst
# get frequency of values at each rgb value(0-255)
values_array = all_ar_lst # use all, but can use any color
temp_dist_ar = np.zeros(shape=(255, self.image_segment_count))
for i in range(self.image_segment_count):
unique, counts = np.unique(values_array[i], return_counts=True)
temp_dict = dict(zip(unique, counts))
for j in temp_dict.keys():
temp_dist_ar[j-1][i] = temp_dict[j]
self.px_dens_dist = temp_dist_ar
# calculate the spearman correlation of distributions between images
# use spearman because it is a non-parametric measures
# use the sum of the correlation coefficients to identify the outlier image
corr_ar = np.array(spearmanr(temp_dist_ar, axis=0))
corr_coef_ar = corr_ar[0,:,:]
corr_pval_ar = corr_ar[1,:,:]
corr_sum_ar = corr_coef_ar.sum(axis=0)
self.corr_coef = corr_coef_ar
self.corr_pval = corr_pval_ar
self.corr_coef_sum = corr_sum_ar
self.outlier_idx = corr_sum_ar.argmin()
self.outlier_val = corr_sum_ar.min()
self.outlier_col_image = self.col_image_lst[self.outlier_idx]
self.outlier_inv_bw_image = self.inv_bw_image_lst[self.outlier_idx]
self.outlier_bw_image = np.invert(self.outlier_inv_bw_image)
# update metadata dataframe
self.image_selected_df['circle_class'] = 'non_circle'
self.image_selected_df.loc[self.outlier_idx, 'circle_class'] = 'circle'
def estimate_size(self, outlier_idx, known_radius=1, canny_sigma=5):
for i in range(len(self.corr_coef_sum)):
# add appropriate data to dataframe when circle not detected at all
if i == (len(self.corr_coef_sum)-1):
self.outlier_idx = None
self.outlier_val = None
self.outlier_col_image = None
self.outlier_inv_bw_image = None
self.outlier_bw_image = None
# update metadata dataframe
self.image_selected_df['circle_class'] = 'non_circle'
self.image_selected_df['real_area'] = 0
clean_inv_bw_image_lst = []
for inv_bw_image in self.inv_bw_image_lst:
# bw_image = np.invert(inv_bw_image)
clean_inv_bw_image = clear_border(inv_bw_image)
clean_inv_bw_image_lst.append(clean_inv_bw_image)
px_count_lst = []
for bw_img in clean_inv_bw_image_lst:
unique_px_count = np.unique(bw_img, return_counts=True)
px_dict = dict(zip(list(unique_px_count[0]), list(unique_px_count[1])))
if len(px_dict) == 1:
px_count = 0
else:
px_count = px_dict[True]
px_count_lst.append(px_count)
self.image_selected_df['pixel_count'] = px_count_lst
print("Circle could not be found: "+str(self.image_dir))
else:
try:
self.outlier_idx = np.argsort(self.corr_coef_sum)[i]
self.outlier_val = np.sort(self.corr_coef_sum)[i]
self.outlier_col_image = self.col_image_lst[self.outlier_idx]
self.outlier_inv_bw_image = self.inv_bw_image_lst[self.outlier_idx]
self.outlier_bw_image = np.invert(self.outlier_inv_bw_image)
# update metadata dataframe
self.image_selected_df['circle_class'] = 'non_circle'
self.image_selected_df.loc[self.outlier_idx, 'circle_class'] = 'circle'
outlier_inv_bw_image = np.invert(self.outlier_bw_image)
# remove the border touching blobs of all b&w images
clean_inv_bw_image_lst = []
for inv_bw_image in self.inv_bw_image_lst:
# bw_image = np.invert(inv_bw_image)
clean_inv_bw_image = clear_border(inv_bw_image)
clean_inv_bw_image_lst.append(clean_inv_bw_image)
# default is the image detected with detect_outlier
# change outlier_bw_image if this is not the ball bearing
edges = canny(self.outlier_bw_image, sigma=canny_sigma)
# Detect radius
max_r = int((max(outlier_inv_bw_image.shape)/2) + (self.image_edge_buffer/2)) # max radius
min_r = int((max_r-self.image_edge_buffer) - (self.image_edge_buffer/2)) # min radius
hough_radii = np.arange(min_r, max_r, 10)
hough_res = hough_circle(edges, hough_radii)
# Select the most prominent circle
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=1)
circy, circx = disk((cy[0], cx[0]), radii[0])
# change the outlier image to fill in the circle
outlier_inv_bw_image[circy, circx] = True # this index error occurs when the outlier object circle does not fit into the image
self.outlier_inv_bw_image = clear_border(outlier_inv_bw_image)
clean_inv_bw_image_lst[self.outlier_idx] = self.outlier_inv_bw_image
self.clean_inv_bw_image_lst = clean_inv_bw_image_lst
# get the area of the ball bearing based on the known radius
circle_area = np.pi*(known_radius**2)
px_count_lst = []
for bw_img in clean_inv_bw_image_lst:
px_count = np.unique(bw_img, return_counts=True)[1][1] # this index error occurs when the outlier object touches the edge of the image (forces recalculation of outlier)
px_count_lst.append(px_count)
self.image_selected_df['pixel_count'] = px_count_lst
circle_px_count = px_count_lst[self.outlier_idx]
area_ar = (np.array(px_count_lst)/circle_px_count)*circle_area
self.image_selected_df['real_area'] = area_ar
break
except IndexError:
print('Updating circle classification for image: '+ str(self.image_dir))
else:
print("No circle was found to estimate beetle size")
# add a section at line 219 that labels all area as 0 and all circle_class as non_circle when the least outlying object is considered. |