Spaces:
Sleeping
Sleeping
Commit
·
6a04cfd
1
Parent(s):
7912d90
Update app.py
Browse files
app.py
CHANGED
@@ -58,62 +58,62 @@ def unkown_prob_calc(probs, wedge_threshold, wedge_magnitude=1, wedge='strict'):
|
|
58 |
unknown_prob = 1-kown_prob
|
59 |
return(unknown_prob)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
#
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#
|
94 |
-
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
|
119 |
# load beetle classifier model
|
@@ -127,11 +127,13 @@ def predict_beetle(img):
|
|
127 |
print("Detecting & classifying beetles...")
|
128 |
start_time = time.perf_counter() # record how long it processes
|
129 |
# Split image into smaller images of detected objects
|
130 |
-
|
131 |
-
|
132 |
-
pre_process
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
print("Objects detected")
|
136 |
end_time = time.perf_counter()
|
137 |
processing_time = end_time - start_time
|
|
|
58 |
unknown_prob = 1-kown_prob
|
59 |
return(unknown_prob)
|
60 |
|
61 |
+
def load_image(image_source):
|
62 |
+
transform = T.Compose(
|
63 |
+
[
|
64 |
+
T.RandomResize([800], max_size=1333),
|
65 |
+
T.ToTensor(),
|
66 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
67 |
+
]
|
68 |
+
)
|
69 |
+
image_source = image_source.convert("RGB")
|
70 |
|
71 |
+
image_transformed, _ = transform(image_source, None)
|
72 |
+
return image_transformed
|
73 |
+
|
74 |
+
# load object detection model
|
75 |
+
od_model = load_model(
|
76 |
+
model_checkpoint_path="groundingdino_swint_ogc.pth",
|
77 |
+
model_config_path="GroundingDINO_SwinT_OGC.cfg.py",
|
78 |
+
device="cpu")
|
79 |
+
print("Object detection model loaded")
|
80 |
+
|
81 |
+
def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
|
82 |
+
TEXT_PROMPT = prompt
|
83 |
+
BOX_TRESHOLD = 0.35
|
84 |
+
TEXT_TRESHOLD = 0.25
|
85 |
+
DEVICE = device # cuda or cpu
|
86 |
|
87 |
+
# Convert numpy array to PIL Image if needed
|
88 |
+
if isinstance(og_image, np.ndarray):
|
89 |
+
og_image_obj = Image.fromarray(og_image)
|
90 |
+
else:
|
91 |
+
og_image_obj = og_image # Assuming og_image is already a PIL Image
|
92 |
+
|
93 |
+
# Transform the image
|
94 |
+
image_transformed = load_image(image_source = og_image_obj)
|
95 |
|
96 |
+
# Your model prediction code here...
|
97 |
+
boxes, logits, phrases = grounding_dino_predict(
|
98 |
+
model=model,
|
99 |
+
image=image_transformed,
|
100 |
+
caption=TEXT_PROMPT,
|
101 |
+
box_threshold=BOX_TRESHOLD,
|
102 |
+
text_threshold=TEXT_TRESHOLD,
|
103 |
+
device=DEVICE)
|
104 |
+
|
105 |
+
# Use og_image_obj directly for further processing
|
106 |
+
height, width = og_image_obj.size
|
107 |
+
boxes_norm = boxes * torch.Tensor([height, width, height, width])
|
108 |
+
xyxy = box_convert(
|
109 |
+
boxes=boxes_norm,
|
110 |
+
in_fmt="cxcywh",
|
111 |
+
out_fmt="xyxy").numpy()
|
112 |
+
img_lst = []
|
113 |
+
for i in range(len(boxes_norm)):
|
114 |
+
crop_img = og_image_obj.crop((xyxy[i]))
|
115 |
+
img_lst.append(crop_img)
|
116 |
+
return (img_lst)
|
117 |
|
118 |
|
119 |
# load beetle classifier model
|
|
|
127 |
print("Detecting & classifying beetles...")
|
128 |
start_time = time.perf_counter() # record how long it processes
|
129 |
# Split image into smaller images of detected objects
|
130 |
+
image_lst = detect_objects(og_image=img, model=od_model, prompt="bug . insect", device="cpu")
|
131 |
+
|
132 |
+
# pre_process = pre_process_image(manual_thresh_buffer=0.15, image = img) # use image_dir if directory of image used
|
133 |
+
# pre_process.segment(cluster_num=2,
|
134 |
+
# image_edge_buffer=50)
|
135 |
+
# image_lst = pre_process.col_image_lst
|
136 |
+
|
137 |
print("Objects detected")
|
138 |
end_time = time.perf_counter()
|
139 |
processing_time = end_time - start_time
|