Spaces:
Sleeping
Sleeping
Commit
·
89c1167
1
Parent(s):
8f34205
Update app.py
Browse files
app.py
CHANGED
@@ -18,18 +18,8 @@ if huggingface_token is None:
|
|
18 |
raise ValueError("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
|
19 |
|
20 |
|
21 |
-
# # Define a custom transform for Gaussian blur
|
22 |
-
# def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=9, sigma_min=0.1, sigma_max=2):
|
23 |
-
# if x.ndim == 4:
|
24 |
-
# for i in range(x.shape[0]):
|
25 |
-
# if random.random() < p:
|
26 |
-
# kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
|
27 |
-
# sigma = random.uniform(sigma_min, sigma_max)
|
28 |
-
# x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
|
29 |
-
# return x
|
30 |
-
|
31 |
# Define a custom transform for Gaussian blur
|
32 |
-
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=
|
33 |
if x.ndim == 4:
|
34 |
for i in range(x.shape[0]):
|
35 |
if random.random() < p:
|
@@ -38,6 +28,16 @@ def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1
|
|
38 |
x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
|
39 |
return x
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# this function only describes how much a singular value in al ist stands out.
|
42 |
# if all values in the lsit are high or low this is 1
|
43 |
# the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
|
|
|
18 |
raise ValueError("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Define a custom transform for Gaussian blur
|
22 |
+
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=9, sigma_min=0.1, sigma_max=2):
|
23 |
if x.ndim == 4:
|
24 |
for i in range(x.shape[0]):
|
25 |
if random.random() < p:
|
|
|
28 |
x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
|
29 |
return x
|
30 |
|
31 |
+
# # Define a custom transform for Gaussian blur
|
32 |
+
# def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
|
33 |
+
# if x.ndim == 4:
|
34 |
+
# for i in range(x.shape[0]):
|
35 |
+
# if random.random() < p:
|
36 |
+
# kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
|
37 |
+
# sigma = random.uniform(sigma_min, sigma_max)
|
38 |
+
# x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
|
39 |
+
# return x
|
40 |
+
|
41 |
# this function only describes how much a singular value in al ist stands out.
|
42 |
# if all values in the lsit are high or low this is 1
|
43 |
# the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
|