Spaces:
Sleeping
Sleeping
Commit
·
8ef1088
1
Parent(s):
56c09ce
Update app.py
Browse filesadd old segmentation
app.py
CHANGED
@@ -11,6 +11,8 @@ from torchvision.ops import box_convert
|
|
11 |
from torchvision.transforms.functional import to_tensor
|
12 |
from torchvision.transforms import GaussianBlur
|
13 |
|
|
|
|
|
14 |
|
15 |
# Define a custom transform for Gaussian blur
|
16 |
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
|
@@ -55,62 +57,62 @@ def unkown_prob_calc(probs, wedge_threshold, wedge_magnitude=1, wedge='strict'):
|
|
55 |
unknown_prob = 1-kown_prob
|
56 |
return(unknown_prob)
|
57 |
|
58 |
-
def load_image(image_source):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# load object detection model
|
72 |
-
od_model = load_model(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
print("Object detection model loaded")
|
77 |
-
|
78 |
-
def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
|
116 |
# load beetle classifier model
|
@@ -123,7 +125,11 @@ print("Classification model loaded")
|
|
123 |
def predict_beetle(img):
|
124 |
print("Detecting & classifying beetles...")
|
125 |
# Split image into smaller images of detected objects
|
126 |
-
image_lst = detect_objects(og_image=img, model=od_model, prompt="bug . insect", device="cpu")
|
|
|
|
|
|
|
|
|
127 |
print("Objects detected")
|
128 |
# get predictions for all segments
|
129 |
conf_dict_lst = []
|
|
|
11 |
from torchvision.transforms.functional import to_tensor
|
12 |
from torchvision.transforms import GaussianBlur
|
13 |
|
14 |
+
from Ambrosia import pre_process_image
|
15 |
+
|
16 |
|
17 |
# Define a custom transform for Gaussian blur
|
18 |
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
|
|
|
57 |
unknown_prob = 1-kown_prob
|
58 |
return(unknown_prob)
|
59 |
|
60 |
+
# def load_image(image_source):
|
61 |
+
# transform = T.Compose(
|
62 |
+
# [
|
63 |
+
# T.RandomResize([800], max_size=1333),
|
64 |
+
# T.ToTensor(),
|
65 |
+
# T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
66 |
+
# ]
|
67 |
+
# )
|
68 |
+
# image_source = image_source.convert("RGB")
|
69 |
|
70 |
+
# image_transformed, _ = transform(image_source, None)
|
71 |
+
# return image_transformed
|
72 |
+
|
73 |
+
# # load object detection model
|
74 |
+
# od_model = load_model(
|
75 |
+
# model_checkpoint_path="groundingdino_swint_ogc.pth",
|
76 |
+
# model_config_path="GroundingDINO_SwinT_OGC.cfg.py",
|
77 |
+
# device="cpu")
|
78 |
+
# print("Object detection model loaded")
|
79 |
+
|
80 |
+
# def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
|
81 |
+
# TEXT_PROMPT = prompt
|
82 |
+
# BOX_TRESHOLD = 0.35
|
83 |
+
# TEXT_TRESHOLD = 0.25
|
84 |
+
# DEVICE = device # cuda or cpu
|
85 |
|
86 |
+
# # Convert numpy array to PIL Image if needed
|
87 |
+
# if isinstance(og_image, np.ndarray):
|
88 |
+
# og_image_obj = Image.fromarray(og_image)
|
89 |
+
# else:
|
90 |
+
# og_image_obj = og_image # Assuming og_image is already a PIL Image
|
91 |
+
|
92 |
+
# # Transform the image
|
93 |
+
# image_transformed = load_image(image_source = og_image_obj)
|
94 |
|
95 |
+
# # Your model prediction code here...
|
96 |
+
# boxes, logits, phrases = grounding_dino_predict(
|
97 |
+
# model=model,
|
98 |
+
# image=image_transformed,
|
99 |
+
# caption=TEXT_PROMPT,
|
100 |
+
# box_threshold=BOX_TRESHOLD,
|
101 |
+
# text_threshold=TEXT_TRESHOLD,
|
102 |
+
# device=DEVICE)
|
103 |
+
|
104 |
+
# # Use og_image_obj directly for further processing
|
105 |
+
# height, width = og_image_obj.size
|
106 |
+
# boxes_norm = boxes * torch.Tensor([height, width, height, width])
|
107 |
+
# xyxy = box_convert(
|
108 |
+
# boxes=boxes_norm,
|
109 |
+
# in_fmt="cxcywh",
|
110 |
+
# out_fmt="xyxy").numpy()
|
111 |
+
# img_lst = []
|
112 |
+
# for i in range(len(boxes_norm)):
|
113 |
+
# crop_img = og_image_obj.crop((xyxy[i]))
|
114 |
+
# img_lst.append(crop_img)
|
115 |
+
# return (img_lst)
|
116 |
|
117 |
|
118 |
# load beetle classifier model
|
|
|
125 |
def predict_beetle(img):
|
126 |
print("Detecting & classifying beetles...")
|
127 |
# Split image into smaller images of detected objects
|
128 |
+
# image_lst = detect_objects(og_image=img, model=od_model, prompt="bug . insect", device="cpu")
|
129 |
+
pre_process = pre_process_image(manual_thresh_buffer=0.15, image = img) # use image_dir if directory of image used
|
130 |
+
pre_process.segment(cluster_num=2,
|
131 |
+
image_edge_buffer=50)
|
132 |
+
image_lst = pre_process.col_image_lst
|
133 |
print("Objects detected")
|
134 |
# get predictions for all segments
|
135 |
conf_dict_lst = []
|