Spaces:
Running
Running
File size: 3,194 Bytes
545f79d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import gradio as gr
from PIL import Image
import os
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision
import numpy as np
import yaml
from huggingface_hub import hf_hub_download
from archs import Network_v3
from options.options import parse
path_opt = './options/test/LOLBlur.yml'
opt = parse(path_opt)
#define some auxiliary functions
pil_to_tensor = transforms.ToTensor()
# define some parameters based on the run we want to make
#selected network
network = opt['network']['name']
PATH_MODEL = opt['save']['path']
model = Network_v3(img_channel=opt['network']['img_channels'],
width=opt['network']['width'],
middle_blk_num=opt['network']['middle_blk_num'],
enc_blk_nums=opt['network']['enc_blk_nums'],
dec_blk_nums=opt['network']['dec_blk_nums'],
residual_layers=opt['network']['residual_layers'],
dilations=opt['network']['dilations'])
checkpoints = torch.load(opt['save']['best'])
# print(checkpoints)
model.load_state_dict(checkpoints['model_state_dict'])
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = model.to(device)
def load_img (filename):
img = Image.open(filename).convert("RGB")
img_tensor = pil_to_tensor(img)
return img_tensor
def process_img(image):
img = np.array(image)
img = img / 255.
img = img.astype(np.float32)
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
with torch.no_grad():
x_hat = model(y)
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
restored_img = np.clip(restored_img, 0. , 1.)
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img))
title = "Low-Light-Deblurring ✏️🖼️ 🤗"
description = ''' ## [Low Light Image deblurring enhancement](https://github.com/cidautai/Net-Low-light-Deblurring)
[Daniel Feijoo](https://github.com/danifei)
Fundación Cidaut
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some degradations.**
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). <br>
The model was trained using mostly synthetic data, thus it might not work great on real-world complex images.
<br>
'''
examples = [['examples/inputs/0010.png'],
['examples/inputs/0060.png'],
['examples/inputs/0075.png'],
["examples/inputs/0087.png"],
["examples/inputs/0088.png"]]
css = """
.image-frame img, .image-container img {
width: auto;
height: auto;
max-width: none;
}
"""
demo = gr.Interface(
fn = process_img,
inputs = [
gr.Image(type = 'pil', label = 'input')
],
outputs = [gr.Image(type='pil', label = 'output')],
title = title,
description = description,
examples = examples,
css = css
)
if __name__ == '__main__':
demo.launch() |