import torch import torch.nn as nn import torch.nn.functional as F import functools try: from .arch_util import EBlock from .arch_util_freq import EBlock_freq except: from arch_util import EBlock from arch_util_freq import EBlock_freq class Network(nn.Module): def __init__(self, img_channel=3, width=16, middle_blk_num_enc=1, middle_blk_num_dec=1, enc_blk_nums=[], dec_blk_nums=[], dilations = [1], extra_depth_wise = False, ksize = 5): super(Network, self).__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() chan = width for num in enc_blk_nums: self.encoders.append( nn.Sequential( *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)] ) ) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks_enc = \ nn.Sequential( *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)] ) self.middle_blks_dec = \ nn.Sequential( *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)] ) for num in dec_blk_nums: self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( nn.Sequential( *[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)] ) ) self.padder_size = 2 ** len(self.encoders) # self.facs = nn.ModuleList([nn.Identity(), nn.Identity(), # nn.Identity(), # nn.Identity()) # self.kconv_deblur = KernelConv2D(ksize=ksize, act = True) def forward(self, input): _, _, H, W = input.shape input = self.check_image_size(input) x = self.intro(input) # encs = [] facs = [] # i = 0 for encoder, down in zip(self.encoders, self.downs): x = encoder(x) # x_fac = fac(x) facs.append(x) # print(i, x.shape) # encs.append(x) x = down(x) # i += 1 # we apply the encoder transforms x_light = self.middle_blks_enc(x) # calculate the fac at this level # x_fac = self.facs[-1](x) # facs.append(x_fac) # apply the decoder transforms x = self.middle_blks_dec(x_light) # apply the fac transform over this step x = x + x_light # print('3', x.shape) # apply the mask # x = x * mask # x = self.recon_trunk_light(x) i = 0 for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]): x = up(x) if i == 2: # in the toppest decoder step x = x + fac_skip x = decoder(x) else: x = x + fac_skip x = decoder(x) i+=1 x = self.ending(x) x = x + input return x[:, :, :H, :W] def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0) return x if __name__ == '__main__': img_channel = 3 width = 32 # enc_blks = [1, 1, 1, 3] # middle_blk_num = 3 # dec_blks = [2, 1, 1, 1] enc_blks = [1, 2, 3] middle_blk_num_enc = 2 middle_blk_num_dec = 2 dec_blks = [3, 1, 1] residual_layers = None dilations = [1, 4, 9] extra_depth_wise = True ksize = 5 net = Network(img_channel=img_channel, width=width, middle_blk_num_enc=middle_blk_num_enc, middle_blk_num_dec= middle_blk_num_dec, enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, dilations = dilations, extra_depth_wise = extra_depth_wise, ksize = ksize) # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, # enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) inp_shape = (3, 256, 256) from ptflops import get_model_complexity_info macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) print(macs, params) inp = torch.randn(1, 3, 256, 256) out = net(inp)