Create A2T.py
Browse files- audio_processing/A2T.py +43 -0
audio_processing/A2T.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import librosa
|
3 |
+
import io
|
4 |
+
|
5 |
+
from .init import pipe
|
6 |
+
|
7 |
+
TASK = "transcribe"
|
8 |
+
BATCH_SIZE = 8
|
9 |
+
|
10 |
+
class A2T:
|
11 |
+
def __init__(self, mic):
|
12 |
+
self.mic = mic
|
13 |
+
|
14 |
+
def __generate_text(self, inputs, task: str = None):
|
15 |
+
if inputs is None:
|
16 |
+
raise Exception("Inputs is None")
|
17 |
+
|
18 |
+
transcribed_text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
19 |
+
return transcribed_text
|
20 |
+
|
21 |
+
def __preprocces(self, raw: bytes):
|
22 |
+
print(f"Raw type : {type(raw)}")
|
23 |
+
chunk = io.BytesIO(raw)
|
24 |
+
audio, sample_rate = librosa.load(chunk, sr=16000)
|
25 |
+
print(f"Sample rate : {sample_rate}")
|
26 |
+
return audio
|
27 |
+
|
28 |
+
def predict(self):
|
29 |
+
try:
|
30 |
+
if self.mic is not None:
|
31 |
+
raw = self.mic
|
32 |
+
audio = self.__preprocces(raw=raw)
|
33 |
+
print(f"audio type : {type(audio)} \n shape : {audio.shape} \n audio max value : {np.max(audio)}")
|
34 |
+
else:
|
35 |
+
raise Exception("please provide audio")
|
36 |
+
|
37 |
+
if isinstance(audio , np.ndarray):
|
38 |
+
return self.__generate_text(inputs=audio, task=TASK)
|
39 |
+
else:
|
40 |
+
raise Exception("Audio is not np array")
|
41 |
+
|
42 |
+
except Exception as e:
|
43 |
+
return f"Oops some kinda error : {e}"
|