import os # os.system('pip install pip==23.3.0') # os.system('pip uninstall spaces -y') # os.system('pip install spaces==0.18.0') # os.system('pip install gradio==4.0.2') import gradio as gr from huggingface_hub import login, HfFileSystem, HfApi, ModelCard import os import spaces import random import torch import json from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation from transformers import AutoFeatureExtractor, AutoModelForDepthEstimation feature_extractor = AutoFeatureExtractor.from_pretrained("Intel/dpt-large") modeld = AutoModelForDepthEstimation.from_pretrained("Intel/dpt-large") # from depthGAN.app import create_visual_demo is_shared_ui = False hf_token = 'SECRET_TOKEN' login(token=hf_token) fs = HfFileSystem(token=hf_token) api = HfApi() device="cuda" if torch.cuda.is_available() else "cpu" from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image from PIL import Image import torch import numpy as np import cv2 vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) # for file naming counter_file_path = "counter.txt" if os.path.exists(counter_file_path): with open(counter_file_path, "r") as file: counter = int(file.read()) else: counter = 0 generated_files = [] def check_use_custom_or_no(value): if value is True: return gr.update(visible=True) else: return gr.update(visible=False) def get_files(file_paths): last_files = {} # Dictionary to store the last file for each path for file_path in file_paths: # Split the file path into directory and file components directory, file_name = file_path.rsplit('/', 1) # Update the last file for the current path last_files[directory] = file_name # Extract the last files from the dictionary result = list(last_files.values()) return result def load_model(model_name): if model_name == "": gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.") raise gr.Error("You forgot to define Model ID.") # Get instance_prompt a.k.a trigger word card = ModelCard.load(model_name) repo_data = card.data.to_dict() instance_prompt = repo_data.get("instance_prompt") if instance_prompt is not None: print(f"Trigger word: {instance_prompt}") else: instance_prompt = "no trigger word needed" print(f"Trigger word: no trigger word needed") # List all ".safetensors" files in repo sfts_available_files = fs.glob(f"{model_name}/*safetensors") sfts_available_files = get_files(sfts_available_files) if sfts_available_files == []: sfts_available_files = ["NO SAFETENSORS FILE"] print(f"Safetensors available: {sfts_available_files}") return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True) def custom_model_changed(model_name, previous_model): if model_name == "" and previous_model == "" : status_message = "" elif model_name != previous_model: status_message = "model changed, please reload before any new run" else: status_message = "model ready" return status_message def resize_image(input_path, output_path, target_height): # Open the input image img = Image.open(input_path) # Calculate the aspect ratio of the original image original_width, original_height = img.size original_aspect_ratio = original_width / original_height # Calculate the new width while maintaining the aspect ratio and the target height new_width = int(target_height * original_aspect_ratio) # Resize the image while maintaining the aspect ratio and fixing the height img = img.resize((new_width, target_height), Image.LANCZOS) # Save the resized image img.save(output_path) return output_path def predict(image, counter): inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = modeld(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth_image = Image.fromarray(formatted) depth_image.save(f"viteGradio/images/depth{counter}.png") return depth_image @spaces.GPU def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)): pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to(device) prompt = prompt negative_prompt = negative_prompt if seed < 0 : seed = random.randint(0, 423538377342) generator = torch.Generator(device=device).manual_seed(seed) if image_in == None: raise gr.Error("You forgot to upload a source image.") image_in = resize_image(image_in, "resized_input.jpg", 1024) if preprocessor == "canny": image = load_image(image_in) image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image = Image.fromarray(image) if use_custom_model: if model_name == "": raise gr.Error("you forgot to set a custom model name.") custom_model = model_name # This is where you load your trained weights if weight_name == "NO SAFETENSORS FILE": pipe.load_lora_weights( custom_model, low_cpu_mem_usage = True, use_auth_token = True ) else: pipe.load_lora_weights( custom_model, weight_name = weight_name, low_cpu_mem_usage = True, use_auth_token = True ) lora_scale=custom_lora_weight images = pipe( prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=float(controlnet_conditioning_scale), guidance_scale = float(guidance_scale), num_inference_steps=inf_steps, generator=generator, cross_attention_kwargs={"scale": lora_scale} ).images else: images = pipe( prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=float(controlnet_conditioning_scale), guidance_scale = float(guidance_scale), num_inference_steps=inf_steps, generator=generator, ).images global counter images[0].save(f"viteGradio/images/result{counter}.png") print("HELP") predict(images[0], counter) with open('viteGradio/images/names.json', 'r') as f: filenames = json.load(f) result_filename = f"result{counter}.png" depth_filename = f"depth{counter}.png" filenames.append(result_filename) filenames.append(depth_filename) with open('viteGradio/images/names.json', 'w') as f: json.dump(filenames, f) counter+=1 with open(counter_file_path, "w") as file: file.write(str(counter)) # create_visual_demo(); return f"viteGradio/images/result{counter-1}.png", seed css=""" .{ height: 20%; } #col-container{ margin: 0 auto; max-width: 720px; text-align: left; } div#warning-duplicate { background-color: #ebf5ff; padding: 0 10px 5px; margin: 20px 0; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } button#load_model_btn{ height: 45px !important; border: none; background-color: #99F6E4; !important; border-radius: 10px !important; padding: 10px !important; cursor: pointer; display: block; position: relative; top: -20px; z-index: 100; } #status_info{ font-size: 0.9em; } """ theme = gr.themes.Soft( primary_hue="teal", secondary_hue="gray", ).set( body_text_color_dark='*neutral_800', background_fill_primary_dark='*neutral_50', background_fill_secondary_dark='*neutral_50', border_color_accent_dark='*primary_300', border_color_primary_dark='*neutral_200', color_accent_soft_dark='*neutral_50', link_text_color_dark='*secondary_600', link_text_color_active_dark='*secondary_600', link_text_color_hover_dark='*secondary_700', link_text_color_visited_dark='*secondary_500', code_background_fill_dark='*neutral_100', shadow_spread_dark='6px', block_background_fill_dark='white', block_label_background_fill_dark='*primary_100', block_label_text_color_dark='*primary_500', block_title_text_color_dark='*primary_500', checkbox_background_color_dark='*background_fill_primary', checkbox_background_color_selected_dark='*primary_600', checkbox_border_color_dark='*neutral_100', checkbox_border_color_focus_dark='*primary_500', checkbox_border_color_hover_dark='*neutral_300', checkbox_border_color_selected_dark='*primary_600', checkbox_label_background_fill_selected_dark='*primary_500', checkbox_label_text_color_selected_dark='white', error_background_fill_dark='#fef2f2', error_border_color_dark='#b91c1c', error_text_color_dark='#b91c1c', error_icon_color_dark='#b91c1c', input_background_fill_dark='white', input_background_fill_focus_dark='*secondary_500', input_border_color_dark='*neutral_50', input_border_color_focus_dark='*secondary_300', input_placeholder_color_dark='*neutral_400', slider_color_dark='*primary_500', stat_background_fill_dark='*primary_300', table_border_color_dark='*neutral_300', table_even_background_fill_dark='white', table_odd_background_fill_dark='*neutral_50', button_primary_background_fill_dark='*primary_500', button_primary_background_fill_hover_dark='*primary_400', button_primary_border_color_dark='*primary_00', button_secondary_background_fill_dark='whiite', button_secondary_background_fill_hover_dark='*neutral_100', button_secondary_border_color_dark='*neutral_200', button_secondary_text_color_dark='*neutral_800' ) #examples = [["examples/" + img] for img in os.listdir("examples/")] im = gr.Image(visible=False) with gr.Blocks(theme=theme, css=css) as demo: with gr.Row(): with gr.Column(elem_id="col-container"): gr.HTML("""
Our Pretrained Models can be found on Huggingface
""") use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", visible = False, value=False, info="To use a private model, you'll need to duplicate the space with your own access token.") with gr.Blocks(visible=False) as custom_model_box: with gr.Row(): with gr.Column(): if not is_shared_ui: your_username = api.whoami()["name"] my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora']) model_names = [item.modelId for item in my_models] if not is_shared_ui: custom_model = gr.Dropdown( label = "Your custom model ID", info="You can pick one of your private models", choices = model_names, allow_custom_value = True #placeholder = "username/model_id" ) else: custom_model = gr.Textbox( label="Your custom model ID", placeholder="your_username/your_trained_model_name", info="Make sure your model is set to PUBLIC" ) weight_name = gr.Dropdown( label="Safetensors file", #value="pytorch_lora_weights.safetensors", info="specify which one if model has several .safetensors files", allow_custom_value=True, visible = False ) with gr.Column(): with gr.Group(): # load_model_btn = gr.Button("Load my model", elem_id="load_model_btn") previous_model = gr.Textbox( visible = False ) model_status = gr.Textbox( label = "model status", show_label = False, elem_id = "status_info" ) trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False) load_model_btn = gr.Button("Load my model", elem_id="load_model_btn") image_in = gr.Image(sources="upload", type="filepath", value=( "shop1.jpg")) # gr.Examples( # examples=[[os.path.join(os.path.dirname(__file__), "shop2.jpg")],[os.path.join(os.path.dirname(__file__), "shop3.jpg")]], inputs=im) with gr.Column(elem_id="col-container"): gr.HTML("""Negative prompts and other settings can be found in advanced options
""") with gr.Row(): with gr.Column(): # with gr.Group(): prompt = gr.Textbox(label="Prompt", placeholder="Add your trigger word here + prompt") with gr.Accordion(label="Advanced Options", open=False, visible=False): # with gr.Group(): negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured") guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=8.8) inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25) custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.7) preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available") controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.3) seed = gr.Slider( label="Seed", info = "-1 denotes a random seed", minimum=-1, maximum=423538377342, step=1, value=-1 ) last_used_seed = gr.Number( label = "Last used seed", info = "the seed used in the last generation", ) submit_btn = gr.Button("Submit") # label = gr.Label(label="Loader") # submit_btn.click(infer, outputs=[label]) result = gr.Image(label="Result", visible=True) use_custom_model.change( fn = check_use_custom_or_no, inputs =[use_custom_model], outputs = [custom_model_box], queue = False ) custom_model.blur( fn=custom_model_changed, inputs = [custom_model, previous_model], outputs = [model_status], queue = False ) load_model_btn.click( fn = load_model, inputs=[custom_model], outputs = [previous_model, model_status, weight_name, trigger_word], queue = False ) submit_btn.click( fn = infer, inputs = [use_custom_model,custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed], outputs = [result, last_used_seed] ) # return demo demo.queue().launch(share=True)