File size: 7,049 Bytes
23ddf94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import csv
import gradio as gr
import pandas as pd
from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
def plot_bar(value_counts):
fig, ax = plt.subplots(figsize=(6, 6))
value_counts.plot.barh(ax=ax)
ax.bar_label(ax.containers[0])
plt.title('Frequency of Predictions')
return fig
def plot_confusion_matrix(y_pred, y_true):
cm = confusion_matrix(y_true, y_pred, normalize='true')
fig, ax = plt.subplots(figsize=(6, 6))
labels = []
for label in SENTI_MAPPING.keys():
if (label in y_pred.values) or (label in y_true.values):
labels.append(label)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=labels)
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
plt.title("Normalized Confusion Matrix")
return fig
def classify(num: int):
samples_df = df.sample(num)
X = samples_df['Text'].tolist()
y = samples_df['Label']
roberta = MODEL_MAPPING[OUR_MODEL]
y_pred = pd.Series(roberta.predict(X), index=samples_df.index)
samples_df['Predict'] = y_pred
bar = plot_bar(y_pred.value_counts())
cm = plot_confusion_matrix(y_pred, y)
plt.close()
return samples_df, bar, cm
def analysis(Text):
keys = []
values = []
for name, model in MODEL_MAPPING.items():
keys.append(name)
values.append(SENTI_MAPPING[model.predict([Text])[0]])
return pd.DataFrame([values], columns=keys)
def analyse_file(file):
output_name = 'output.csv'
with open(output_name, mode='w', newline='') as output:
writer = csv.writer(output)
header = ['Text', 'Label']
writer.writerow(header)
model = MODEL_MAPPING[OUR_MODEL]
with open(file.name) as f:
for line in f:
text = line[:-1]
sentiment = model.predict([text])
writer.writerow([text, sentiment[0]])
return output_name
MODEL_MAPPING = {
'Random': RandomAnalyser(),
'RoBERTa': RoBERTaAnalyser(),
'ChatGPT': RandomAnalyser(),
}
OUR_MODEL = 'RoBERTa'
SENTI_MAPPING = {
'negative': '😭',
'neutral': '😶',
'positive': '🥰'
}
TITLE = "Sentiment Analysis on Software Engineer Texts"
DESCRIPTION = {
'en': (
"This is the demo page for our model: "
"[Cloudy1225/stackoverflow-roberta-base-sentiment]"
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
),
'zh': (
"这里是第16组“睿王和他的五个小跟班”软工三迭代三模型演示页面。"
"模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]"
"(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)."
)
}
PROMPT1 = {
'en': (
"Enter text in the left text box and press Enter, and the sentiment analysis results will be output on the right. "
"Here, we present three types of results, which come from random, our model, and ChatGPT."
),
'zh': (
"在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。"
"这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。"
)
}
PROMPT2 = {
'en': (
"Upload a txt/csv file in the left file box, and the model will perform sentiment analysis on each line of the input text. "
"You can download the output file on the right. "
"The output file will be in CSV format with two columns: the original text, and the classification results."
),
'zh': (
"在左侧文件框中上传 txt/csv 文件,模型会对输入文本的每一行当作一个文本进行情感分析。"
"可以在右侧下载输出文件,输出文件为两列 csv 格式,第一列为原始文本,第二列为分类结果。"
)
}
PROMPT3 = {
'en': (
"Here we evaluate our model on the StackOverflow4423 dataset. "
"Sliding the slider will sample a specified number of samples from the StackOverflow4423 dataset and predict their sentiment labels. "
"Based on the prediction results, a label distribution chart and a confusion matrix will be plotted."
),
'zh': (
"这里是在 StackOverflow4423 数据集上评估我们的模型。"
"滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。"
"并根据预测结果绘制标签分布图和混淆矩阵。"
)
}
DEFAULT_LANG = 'en'
MAX_SAMPLES = 64
df = pd.read_csv('./SOF4423.csv')
def set_language(lang):
return DESCRIPTION[lang], PROMPT1[lang], PROMPT2[lang], PROMPT3[lang]
with gr.Blocks(title=TITLE) as demo:
with gr.Row():
with gr.Column():
gr.HTML(f"<H1>{TITLE}</H1>")
with gr.Column(min_width=160):
language_selector = gr.Radio(
['en', 'zh'], label="Select Language", value=DEFAULT_LANG,
interactive=True, show_label=False, container=False
)
description = gr.Markdown(DESCRIPTION[DEFAULT_LANG])
gr.HTML("<H2>Model Inference</H2>")
prompt1 = gr.Markdown(PROMPT1[DEFAULT_LANG])
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label='Input',
placeholder="Enter a positive or negative sentence here...")
with gr.Column():
senti_output = gr.Dataframe(type="pandas", value=[['😋', '😋', '😋']],
headers=list(MODEL_MAPPING.keys()), interactive=False)
text_input.submit(analysis, inputs=text_input, outputs=senti_output, show_progress='full')
prompt2 = gr.Markdown(PROMPT2[DEFAULT_LANG])
with gr.Row():
with gr.Column():
file_input = gr.File(label='File',
file_types=['.txt', '.csv'])
with gr.Column():
file_output = gr.File(label='Output')
file_input.upload(analyse_file, inputs=file_input, outputs=file_output)
gr.HTML("<H2>Model Evaluation</H2>")
prompt3 = gr.Markdown(PROMPT3[DEFAULT_LANG])
input_models = list(MODEL_MAPPING)
input_n_samples = gr.Slider(
minimum=4,
maximum=MAX_SAMPLES,
value=8,
step=4,
label='Number of samples'
)
with gr.Row():
with gr.Column():
bar_plot = gr.Plot(label='Predictions Frequency')
with gr.Column():
cm_plot = gr.Plot(label='Confusion Matrix')
with gr.Row():
dataframe = gr.Dataframe(type="pandas", wrap=True, headers=['Text', 'Label', 'Predict'])
input_n_samples.change(fn=classify, inputs=input_n_samples, outputs=[dataframe, bar_plot, cm_plot])
language_selector.change(fn=set_language, inputs=language_selector,
outputs=[description, prompt1, prompt2, prompt3])
demo.launch()
|