import csv import gradio as gr import pandas as pd from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser import matplotlib.pyplot as plt from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix def plot_bar(value_counts): fig, ax = plt.subplots(figsize=(6, 6)) value_counts.plot.barh(ax=ax) ax.bar_label(ax.containers[0]) plt.title('Frequency of Predictions') return fig def plot_confusion_matrix(y_pred, y_true): cm = confusion_matrix(y_true, y_pred, normalize='true') fig, ax = plt.subplots(figsize=(6, 6)) labels = [] for label in SENTI_MAPPING.keys(): if (label in y_pred.values) or (label in y_true.values): labels.append(label) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False) plt.title("Normalized Confusion Matrix") return fig def classify(num: int): samples_df = df.sample(num) X = samples_df['Text'].tolist() y = samples_df['Label'] roberta = MODEL_MAPPING[OUR_MODEL] y_pred = pd.Series(roberta.predict(X), index=samples_df.index) samples_df['Predict'] = y_pred bar = plot_bar(y_pred.value_counts()) cm = plot_confusion_matrix(y_pred, y) plt.close() return samples_df, bar, cm def analysis(Text): keys = [] values = [] for name, model in MODEL_MAPPING.items(): keys.append(name) values.append(SENTI_MAPPING[model.predict([Text])[0]]) return pd.DataFrame([values], columns=keys) def analyse_file(file): output_name = 'output.csv' with open(output_name, mode='w', newline='') as output: writer = csv.writer(output) header = ['Text', 'Label'] writer.writerow(header) model = MODEL_MAPPING[OUR_MODEL] with open(file.name) as f: for line in f: text = line[:-1] sentiment = model.predict([text]) writer.writerow([text, sentiment[0]]) return output_name MODEL_MAPPING = { 'Random': RandomAnalyser(), 'RoBERTa': RoBERTaAnalyser(), 'ChatGPT': RandomAnalyser(), } OUR_MODEL = 'RoBERTa' SENTI_MAPPING = { 'negative': '😭', 'neutral': '😶', 'positive': '🥰' } TITLE = "Sentiment Analysis on Software Engineer Texts" DESCRIPTION = { 'en': ( "This is the demo page for our model: " "[Cloudy1225/stackoverflow-roberta-base-sentiment]" "(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)." ), 'zh': ( "这里是第16组“睿王和他的五个小跟班”软工三迭代三模型演示页面。" "模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]" "(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment)." ) } PROMPT1 = { 'en': ( "Enter text in the left text box and press Enter, and the sentiment analysis results will be output on the right. " "Here, we present three types of results, which come from random, our model, and ChatGPT." ), 'zh': ( "在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。" "这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。" ) } PROMPT2 = { 'en': ( "Upload a txt/csv file in the left file box, and the model will perform sentiment analysis on each line of the input text. " "You can download the output file on the right. " "The output file will be in CSV format with two columns: the original text, and the classification results." ), 'zh': ( "在左侧文件框中上传 txt/csv 文件,模型会对输入文本的每一行当作一个文本进行情感分析。" "可以在右侧下载输出文件,输出文件为两列 csv 格式,第一列为原始文本,第二列为分类结果。" ) } PROMPT3 = { 'en': ( "Here we evaluate our model on the StackOverflow4423 dataset. " "Sliding the slider will sample a specified number of samples from the StackOverflow4423 dataset and predict their sentiment labels. " "Based on the prediction results, a label distribution chart and a confusion matrix will be plotted." ), 'zh': ( "这里是在 StackOverflow4423 数据集上评估我们的模型。" "滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。" "并根据预测结果绘制标签分布图和混淆矩阵。" ) } DEFAULT_LANG = 'en' MAX_SAMPLES = 64 df = pd.read_csv('./SOF4423.csv') def set_language(lang): return DESCRIPTION[lang], PROMPT1[lang], PROMPT2[lang], PROMPT3[lang] with gr.Blocks(title=TITLE) as demo: with gr.Row(): with gr.Column(): gr.HTML(f"