File size: 10,602 Bytes
b112894 45630b8 b112894 45630b8 b112894 45630b8 b112894 b1131e0 b112894 b1131e0 b112894 b1131e0 b112894 23939ce b1131e0 b112894 23939ce b112894 b1131e0 b112894 b1131e0 b112894 23939ce b112894 23939ce b112894 8322c54 b112894 23939ce b112894 23939ce b112894 14c7cad 8322c54 b112894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from __future__ import annotations
import gradio as gr
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
import subprocess
def runcmd(command):
ret = subprocess.run(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE,encoding="utf-8",timeout=60)
if ret.returncode == 0:
print("success:",ret)
else:
print("error:",ret)
runcmd("pip3 install --upgrade clueai")
import clueai
cl = clueai.Client("", check_api_key=False)
'''
#luck_t2i_btn_1, #luck_s2i_btn_1, #luck_i2i_btn_1, #luck_ici_btn_1{
color: #fff;
--tw-gradient-from: #BED336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #BED336;
border-color: #BED336;
}
#luck_easy_btn_1, #luck_iti_btn_1, #luck_tsi_btn_1, #luck_isi_btn_1{
color: #fff;
--tw-gradient-from: #BED336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #BED336;
border-color: #BED336;
}
'''
css='''
.container { max-width: 800px; margin: auto; }
#gen_btn_1{
color: #fff;
--tw-gradient-from: #f44336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #ff9800;
border-color: #ff9800;
}
#t2i_btn_1, #s2i_btn_1, #i2i_btn_1, #ici_btn_1, #easy_btn_1, #iti_btn_1, #tsi_btn_1, #isi_btn_1{
color: #fff;
--tw-gradient-from: #f44336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #ff9800;
border-color: #ff9800;
}
#import_t2i_btn_1, #import_s2i_btn_1, #import_i2i_btn_1, #import_ici_btn_1{
color: #fff;
--tw-gradient-from: #BED336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #BED336;
border-color: #BED336;
}
#import_easy_btn_1, #import_iti_btn_1, #import_tsi_btn_1, #import_isi_btn_1{
color: #fff;
--tw-gradient-from: #BED336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #BED336;
border-color: #BED336;
}
#record_btn{
}
#record_btn > div > button > span {
width: 2.375rem;
height: 2.375rem;
}
#record_btn > div > button > span > span {
width: 2.375rem;
height: 2.375rem;
}
audio {
margin-bottom: 10px;
}
div#record_btn > .mt-6{
margin-top: 0!important;
}
div#record_btn > .mt-6 button {
font-size: 1em;
width: 100%;
padding: 20px;
height: 60px;
}
div#txt2img_tab {
color: #BED336;
}
'''
default_generate_config = {
"do_sample": False,
"top_p": 0,
"top_k": 50,
"max_length": 64,
"temperature": 1,
"num_beams": 1,
"length_penalty": 0.6
}
task_styles = []
examples_list = []
task_style_to_task_prefix = {}
import csv
examples_set = set()
def read_examples(input_file):
header = True
with open(input_file) as finput:
csv_input = csv.reader(finput)
for line in csv_input:
if header:
header = False
continue
task_style, task_prefix, example = line
task_styles.append(task_style)
task_style_to_task_prefix[task_style] = task_prefix
examples_list.append([task_style, example])
examples_set.add((task_style, example))
read_examples("./examples.csv")
#print(task_styles)
def preprocess(text, task):
if task == "问答":
text = text.replace("?", ":").replace("?", ":")
text = text + ":"
return task_style_to_task_prefix[task] + "\n" + text + "\n答案:"
def inference_gen(text, task, do_sample, top_p, top_k, max_token, temperature, beam_size, length_penalty):
default_example = (task, text) in examples_set
text = preprocess(text, task)
generate_config = {
"do_sample": do_sample,
"top_p": top_p,
"top_k": top_k,
"max_length": max_token,
"temperature": temperature,
"num_beams": beam_size,
"length_penalty": length_penalty
}
#print(generate_config)
#print(text)
default_example = default_example and generate_config == default_generate_config
try:
if default_example:
prediction = cl.generate(
model_name='clueai-base',
prompt=text)
else:
prediction = cl.generate(
model_name='clueai-base',
prompt=text,
generate_config=generate_config)
except Exception as e:
logger.error(f"error, {e}")
return
return prediction.generations[0].text
t2i_default_img_path_list = []
import base64, requests
from io import BytesIO
from PIL import Image
def inference_image(text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale):
try:
res = requests.get(f"https://www.clueai.cn/clueai/hf_text2image?text={text}&negative_prompt={n_text}\
&guidance_scale={guidance_scale}&num_inference_steps={steps}\
&style={style}&shape={shape}&clarity={clarity}&shape_scale={shape_scale}")
except Exception as e:
logger.error(f"error, {e}")
return
json_dict = res.json()
file_path_list = []
for i, image in enumerate(json_dict["images"]):
image = image.encode('utf-8')
binary_data = base64.b64decode(image)
img_data = BytesIO(binary_data)
img = Image.open(img_data)
file_path_list.append(img)
return file_path_list
image_styles = ['无', '细节大师', '对称美', '虚拟引擎', '空间感', '机械风格', '形状艺术', '治愈', '电影构图', '电影构图(治愈)', '荒芜感', '漫画', '逃离艺术', '斯皮尔伯格', '幻想', '杰作', '壁画', '朦胧', '黑白(3d)', '梵高', '毕加索', '莫奈', '丰子恺', '现代', '欧美']
with gr.Blocks(css=css, title="ClueAI") as demo:
gr.Markdown('<h1><center><font color=red style="font-size:50px;">ClueAI全能师</font></center></h1>')
with gr.TabItem("文本生成", id='_tab'):
with gr.Row(variant="compact").style( equal_height=True):
text = gr.Textbox("标题:俄天然气管道泄漏爆炸",
label="编辑内容", show_label=False, max_lines=20,
placeholder="在这里输入...",
)
task = gr.Dropdown(label="任务", show_label=True, choices=task_styles, value="标题生成文章")
btn = gr.Button("生成",elem_id="gen_btn_1").style(full_width=False)
with gr.Accordion("高级操作", open=False):
do_sample = gr.Radio([True, False], label="是否采样", value=False)
top_p = gr.Slider(0, 1, value=0, step=0.1, label="越大多样性越高, 按照概率采样")
top_k = gr.Slider(1, 100, value=50, step=1, label="越大多样性越高,按照top k采样")
max_token = gr.Slider(1, 512, value=64, step=1, label="生成的最大长度")
temperature = gr.Slider(0,1, value=1, step=0.1, label="temperature, 越小下一个token预测概率越平滑")
beam_size = gr.Slider(1, 4, value=1, step=1, label="beam size, 越大解码窗口越广,")
length_penalty = gr.Slider(-1, 1, value=0.6, step=0.1, label="大于0鼓励长句子,小于0鼓励短句子")
with gr.Row(variant="compact").style( equal_height=True):
output_text = gr.Textbox(
label="输出", show_label=True, max_lines=50,
placeholder="在这里展示结果",
)
gr.Examples(examples_list, [task, text], label="示例")
input_params = [text, task, do_sample, top_p, top_k, max_token, temperature, beam_size, length_penalty]
#text.submit(inference_gen, inputs=input_params, outputs=output_text)
btn.click(inference_gen, inputs=input_params, outputs=output_text)
with gr.TabItem("图像生成", id='txt2img_tab'):
with gr.Row(variant="compact").style( equal_height=True):
text = gr.Textbox("美丽的风景",
label="编辑内容", show_label=False, max_lines=2,
placeholder="在这里输入你的描述...",
)
btn = gr.Button("生成图像",elem_id="t2i_btn_1").style(full_width=False)
with gr.Row().style( equal_height=True):
generate_prompt_btn = gr.Button("手气不错", elem_id="luck_t2i_btn_1")
style = gr.Dropdown(label="风格", show_label=True, choices=image_styles, value="无")
with gr.Accordion("高级操作", open=False):
n_text = gr.Textbox("",
label="不想要生成的元素", show_label=True, max_lines=2,
placeholder="在这里输入你不需要包含的内容...",
)
guidance_scale = gr.Slider(1, 20, value=7.5, step=0.5, label="和你的描述匹配程度,越大越匹配")
shape = gr.Radio(["1x1", "16x9", "手机壁纸"], label="尺寸", value="1x1")
shape_scale = gr.Radio([1, 2, 3], label="对图放大倍数", value=1)
steps = gr.Slider(10, 150, value=50, step=1, label="越大质量越好,生成时间越长")
clarity = gr.Radio(["标清", "高清"], label="清晰度", value="标清")
gr.Examples(["秋日的晚霞", "星空", "室内装修", "婚礼鲜花"], text, label="示例")
t2i_gallery = gr.Gallery(
t2i_default_img_path_list,
label="生成图像",
show_label=False).style(
grid=[2], height="auto"
)
input_params = [text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale]
generate_prompt_btn.click(inference_image, inputs=input_params, outputs=[t2i_gallery])
text.submit(inference_image, inputs=input_params, outputs=t2i_gallery)
btn.click(inference_image, inputs=input_params, outputs=t2i_gallery)
#demo.queue(concurrency_count=3)
demo.launch()
|