Spaces:
Paused
Paused
File size: 3,807 Bytes
4c95dc7 d523035 4c95dc7 d523035 4c95dc7 d523035 31f9732 4c95dc7 d523035 4c95dc7 d523035 31f9732 4c95dc7 31f9732 4c95dc7 31f9732 4c95dc7 d523035 4c95dc7 31f9732 4c95dc7 31f9732 4c95dc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import models
#import constants
#from langchain_experimental.text_splitter import SemanticChunker
from langchain_qdrant import QdrantVectorStore, Qdrant
from langchain_community.document_loaders import PyPDFLoader, UnstructuredURLLoader
from qdrant_client.http.models import VectorParams
import pymupdf
import requests
from transformers import AutoTokenizer
def extract_links_from_pdf(pdf_path):
links = []
doc = pymupdf.open(pdf_path)
for page in doc:
for link in page.get_links():
if link['uri']:
links.append(link['uri'])
return links
def load_documents_from_url(url):
try:
# Check if it's a PDF
if url.endswith(".pdf"):
try:
loader = PyPDFLoader(url)
return loader.load()
except Exception as e:
print(f"Error loading PDF from {url}: {e}")
return None
# Fetch the content and check for video pages
try:
response = requests.head(url, timeout=10) # Timeout for fetching headers
content_type = response.headers.get('Content-Type', '')
except Exception as e:
print(f"Error fetching headers from {url}: {e}")
return None
# Ignore video content (flagged for now)
if 'video' in content_type:
return None
if 'youtube' in url:
return None
# Otherwise, treat it as an HTML page
try:
loader = UnstructuredURLLoader([url])
return loader.load()
except Exception as e:
print(f"Error loading HTML from {url}: {e}")
return None
except Exception as e:
print(f"General error loading from {url}: {e}")
return None
#gather kai's docs
filepaths = ["./test_docs/Employee Statistics FINAL.pdf","./test_docs/Employer Statistics FINAL.pdf","./test_docs/Articles To Share.pdf"]
all_links = []
for pdf_path in filepaths:
all_links.extend(extract_links_from_pdf(pdf_path))
unique_links = list(set(all_links))
print(unique_links)
documents = []
for link in unique_links:
doc = load_documents_from_url(link)
#print(f"loaded doc from {link}")
if doc:
documents.extend(doc)
#print(len(documents))
#semantic_split_docs = models.semanticChunker.split_documents(documents)
semantic_tuned_split_docs = models.semanticChunker_tuned.split_documents(documents)
#RCTS_split_docs = models.RCTS.split_documents(documents)
#print(len(semantic_split_docs))
print(len(semantic_tuned_split_docs))
#tokenizer = models.tuned_embeddings.client.tokenizer
#
#token_sizes = [len(tokenizer.encode(chunk)) for chunk in semantic_tuned_split_docs]
# Display the token sizes
#for idx, size in enumerate(token_sizes):
# print(f"Chunk {idx + 1}: {size} tokens")
#
#exit()
#add them to the existing qdrant client
collection_name = "docs_from_ripped_urls_semantic_tuned"
collections = models.qdrant_client.get_collections()
collection_names = [collection.name for collection in collections.collections]
# If the collection does not exist, create it
if collection_name not in collection_names:
models.qdrant_client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1024, distance="Cosine")
)
qdrant_vector_store = QdrantVectorStore(
client=models.qdrant_client,
collection_name=collection_name,
embedding=models.tuned_embeddings
)
qdrant_vector_store.add_documents(semantic_tuned_split_docs)
collection_info = models.qdrant_client.get_collection(collection_name)
print(f"Number of points in collection: {collection_info.points_count}") |