from langchain_anthropic import ChatAnthropic from langchain_openai import ChatOpenAI from langchain.callbacks.manager import CallbackManager from langchain.callbacks.tracers import LangChainTracer from langchain_huggingface.embeddings import HuggingFaceEmbeddings from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings from langchain_qdrant import QdrantVectorStore, Qdrant from langchain.retrievers.contextual_compression import ContextualCompressionRetriever from qdrant_client import QdrantClient from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_cohere import CohereRerank import constants import os os.environ["LANGCHAIN_API_KEY"] = constants.LANGCHAIN_API_KEY os.environ["LANGCHAIN_TRACING_V2"] = str(constants.LANGCHAIN_TRACING_V2) os.environ["LANGCHAIN_ENDPOINT"] = constants.LANGCHAIN_ENDPOINT tracer = LangChainTracer() callback_manager = CallbackManager([tracer]) qdrant_client = QdrantClient(url=constants.QDRANT_ENDPOINT, api_key=constants.QDRANT_API_KEY) opus3 = ChatAnthropic( api_key=constants.ANTRHOPIC_API_KEY, temperature=0, model='claude-3-opus-20240229', callbacks=callback_manager ) sonnet35 = ChatAnthropic( api_key=constants.ANTRHOPIC_API_KEY, temperature=0, model='claude-3-5-sonnet-20240620', max_tokens=4096, callbacks=callback_manager ) gpt4 = ChatOpenAI( model="gpt-4", temperature=0, max_tokens=None, timeout=None, max_retries=2, api_key=constants.OPENAI_API_KEY, callbacks=callback_manager ) gpt4o = ChatOpenAI( model="gpt-4o", temperature=0, max_tokens=None, timeout=None, max_retries=2, api_key=constants.OPENAI_API_KEY, callbacks=callback_manager ) gpt4o_mini = ChatOpenAI( model="gpt-4o-mini", temperature=0, max_tokens=None, timeout=None, max_retries=2, api_key=constants.OPENAI_API_KEY, callbacks=callback_manager ) basic_embeddings = HuggingFaceEmbeddings(model_name="snowflake/snowflake-arctic-embed-l") tuned_embeddings = HuggingFaceEmbeddings(model_name="CoExperiences/snowflake-l-marketing-tuned") te3_small = OpenAIEmbeddings(api_key=constants.OPENAI_API_KEY, model="text-embedding-3-small") semanticChunker = SemanticChunker( te3_small, breakpoint_threshold_type="percentile" ) semanticChunker_tuned = SemanticChunker( tuned_embeddings, breakpoint_threshold_type="percentile", breakpoint_threshold_amount=85 ) RCTS = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size=500, chunk_overlap=25, length_function=len, ) semantic_tuned_Qdrant_vs = QdrantVectorStore( client=qdrant_client, collection_name="docs_from_ripped_urls_semantic_tuned", embedding=tuned_embeddings ) semantic_tuned_retriever = semantic_tuned_Qdrant_vs.as_retriever(search_kwargs={"k" : 10}) #compression compressor = CohereRerank(model="rerank-english-v3.0") compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=semantic_tuned_retriever )