File size: 11,311 Bytes
e774cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data import TensorDataset, DataLoader
from PIL import Image
import matplotlib.pyplot as plt
from dataloader import imgDataset
import time
import os
import copy
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import AutoImageProcessor, ResNetModel
from translate import Translator

PATH = './images/'

class CUPredictor_v2(nn.Module):
    def __init__(self, num_class=2):
        super(CUPredictor_v2, self).__init__()
        self.base = ResNetModel.from_pretrained("microsoft/resnet-50")
        num_ftrs = 2048
        #self.base.fc = nn.Linear(num_ftrs, num_ftrs//2) 
        self.classifier = nn.Linear(num_ftrs, num_class)
        self.height_regressor = nn.Linear(num_ftrs, 1)
        self.relu = nn.ReLU()

    def forward(self, input_img):
        output = self.base(input_img['pixel_values'].squeeze(1)).pooler_output.squeeze() 
        predict_cls = self.classifier(output)
        predict_height = self.relu(self.height_regressor(output))
        return predict_cls, predict_height

class CUPredictor(nn.Module):
    def __init__(self, num_class=2):
        super(CUPredictor, self).__init__()
        self.base = torchvision.models.resnet50(pretrained=True)
        for param in self.base.parameters():
            param.requires_grad = False

        num_ftrs = self.base.fc.in_features
        self.base.fc = nn.Sequential(
          nn.Linear(num_ftrs, num_ftrs//4),
          nn.ReLU(),
          nn.Linear(num_ftrs//4, num_ftrs//8),
          nn.ReLU()
        ) 
        self.classifier = nn.Linear(num_ftrs//8, num_class)
        self.regressor_h = nn.Linear(num_ftrs//8, 1)
        self.regressor_b = nn.Linear(num_ftrs//8, 1)
        self.regressor_w = nn.Linear(num_ftrs//8, 1)
        self.regressor_hi = nn.Linear(num_ftrs//8, 1)
        self.relu = nn.ReLU()

    def forward(self, input_img):
        output = self.base(input_img)    
        predict_cls = self.classifier(output)
        predict_h = self.relu(self.regressor_h(output))
        predict_b = self.relu(self.regressor_b(output))
        predict_w = self.relu(self.regressor_w(output))
        predict_hi = self.relu(self.regressor_hi(output))
        return predict_cls, predict_h, predict_b, predict_w, predict_hi


def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated 
    plt.savefig(f'images/preds/prediction.png')   

def train_model(model, device, dataloaders, dataset_sizes, num_epochs=25):
    since = time.time()
    ce = nn.CrossEntropyLoss()
    mse = nn.MSELoss()
    optimizer = optim.AdamW(model.parameters(), lr=0.0008)
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(f'Epoch {epoch+1}/{num_epochs}')
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_ce_loss = 0.0
            running_rmse_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels, heights, bust, waist, hips in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                heights = heights.to(device)
                bust = bust.to(device)
                waist, hips = waist.to(device), hips.to(device)
                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
                    _, preds = torch.max(outputs_c, 1)
                    ce_loss = ce(outputs_c, labels)
                    rmse_loss_h = torch.sqrt(mse(outputs_h, heights.unsqueeze(-1)))
                    rmse_loss_b = torch.sqrt(mse(outputs_b, bust.unsqueeze(-1)))
                    rmse_loss_w = torch.sqrt(mse(outputs_w, waist.unsqueeze(-1)))
                    rmse_loss_hi = torch.sqrt(mse(outputs_hi, hips.unsqueeze(-1)))
                    rmse_loss = rmse_loss_h*4 + rmse_loss_b*2 + rmse_loss_w + rmse_loss_hi
                    loss = ce_loss + (rmse_loss)*1

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                        optimizer.step()

                # statistics
                running_ce_loss += ce_loss.item() * inputs.size(0)
                running_rmse_loss += rmse_loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)            

            epoch_ce_loss = running_ce_loss / dataset_sizes[phase]
            epoch_rmse_loss = running_rmse_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print(f'{phase} CE_Loss: {epoch_ce_loss:.4f} RMSE_Loss: {epoch_rmse_loss:.4f} Acc: {epoch_acc:.4f}')

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
        #if epoch %2 == 0 and phase == 'val':print(outputs_c, outputs_h)
        print()

    time_elapsed = time.time() - since
    print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
    print(f'Best val Acc: {best_acc:4f}')

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

def visualize_model(model, device, dataloaders, class_names, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title(f'pred: {class_names[preds[j]]}|tar: {class_names[labels[j]]}')
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)      

def evaluation(model, epoch, device, dataloaders):
    model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
    model.eval()
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            print(preds)

def inference(inp_img, classes = ['big', 'small'], epoch = 6):
    device = torch.device("cpu")
    translator= Translator(to_lang="zh-TW")

    model = model = CUPredictor()
    model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
    # load image-to-text model
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    model.eval()

    trans = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])    

    image_tensor = trans(inp_img)
    image_tensor = image_tensor.unsqueeze(0)
    with torch.no_grad():
        inputs = image_tensor.to(device)
        outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
        _, preds = torch.max(outputs_c, 1)
        idx = preds.numpy()[0]

        # unconditional image captioning
        inputs = processor(inp_img, return_tensors="pt")
        out = model_blip.generate(**inputs)
        description = processor.decode(out[0], skip_special_tokens=True)
        description_tw = translator.translate(description)
    return outputs_c, classes[idx], f"{outputs_h.numpy()[0][0]:.2f}", f"{outputs_b.numpy()[0][0]:.2f}", f"{outputs_w.numpy()[0][0]:.2f}", f"{outputs_hi.numpy()[0][0]:.2f}", [description, description_tw]

def main(epoch = 15, mode = 'val'):
    cudnn.benchmark = True
    plt.ion()   # interactive mode
    model = CUPredictor()
    train_dataset = imgDataset('labels.txt', mode='train', use_processor=False)
    test_dataset = imgDataset('labels.txt', mode='val', use_processor=False)
    dataloaders = {
                    "train": DataLoader(train_dataset, batch_size=64, shuffle=True),
                    "val": DataLoader(test_dataset, batch_size=64, shuffle=False)
    }
    dataset_sizes = {
        "train": len(train_dataset),
        "val": len(test_dataset)
    }
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    #device = torch.device("cpu")   
    model = model.to(device)
    model_conv = train_model(model, device, dataloaders, dataset_sizes, num_epochs=epoch)
    torch.save(model_conv.state_dict(), f'models/model_{epoch}.pt')

def divide_class_dir(path):
    file_list = os.listdir(path)
    for img_name in file_list:
        dest_path = os.path.join(path, img_name.split('-')[3])
        if not os.path.exists(dest_path):
            os.mkdir(dest_path)  # 建立資料夾
        os.replace(os.path.join(path, img_name), os.path.join(dest_path, img_name))

def get_label(types):
    with open('labels.txt', 'w', encoding='utf-8') as f:
        for f_type in types:
            for img_type in CLASS:
                path = os.path.join('images', f_type, img_type)
                file_list = os.listdir(path)
                for file_name in file_list:
                    file_name_list = file_name.split('-')
                    f.write(" ".join([f_type, file_name, img_type, file_name_list[4].split('_')[0], '\n']))

if __name__ == "__main__":
    
    CLASS = ['big', 'small']
    mode = 'train'
    get_label(['train', 'val'])
    epoch = 7
    #main(epoch, mode = mode)
    
    outputs, preds, heights, bust, waist, hips, description = inference('images/test/lin.png', CLASS, epoch=epoch)
    print(outputs, preds, heights, bust, waist, hips)
    #print(CUPredictor())
    #divide_class_dir('./images/train_all')
    #divide_class_dir('./images/val_all')
    ''''''