Spaces:
Running
Running
File size: 11,315 Bytes
e774cd9 efb05de e774cd9 efb05de e774cd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data import TensorDataset, DataLoader
from PIL import Image
import matplotlib.pyplot as plt
from dataloader import imgDataset
import time
import os
import copy
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import AutoImageProcessor, ResNetModel
from translate import Translator
PATH = './images/'
class CUPredictor_v2(nn.Module):
def __init__(self, num_class=2):
super(CUPredictor_v2, self).__init__()
self.base = ResNetModel.from_pretrained("microsoft/resnet-50")
num_ftrs = 2048
#self.base.fc = nn.Linear(num_ftrs, num_ftrs//2)
self.classifier = nn.Linear(num_ftrs, num_class)
self.height_regressor = nn.Linear(num_ftrs, 1)
self.relu = nn.ReLU()
def forward(self, input_img):
output = self.base(input_img['pixel_values'].squeeze(1)).pooler_output.squeeze()
predict_cls = self.classifier(output)
predict_height = self.relu(self.height_regressor(output))
return predict_cls, predict_height
class CUPredictor(nn.Module):
def __init__(self, num_class=2):
super(CUPredictor, self).__init__()
self.base = torchvision.models.resnet50(pretrained=True)
for param in self.base.parameters():
param.requires_grad = False
num_ftrs = self.base.fc.in_features
self.base.fc = nn.Sequential(
nn.Linear(num_ftrs, num_ftrs//4),
nn.ReLU(),
nn.Linear(num_ftrs//4, num_ftrs//8),
nn.ReLU()
)
self.classifier = nn.Linear(num_ftrs//8, num_class)
self.regressor_h = nn.Linear(num_ftrs//8, 1)
self.regressor_b = nn.Linear(num_ftrs//8, 1)
self.regressor_w = nn.Linear(num_ftrs//8, 1)
self.regressor_hi = nn.Linear(num_ftrs//8, 1)
self.relu = nn.ReLU()
def forward(self, input_img):
output = self.base(input_img)
predict_cls = self.classifier(output)
predict_h = self.relu(self.regressor_h(output))
predict_b = self.relu(self.regressor_b(output))
predict_w = self.relu(self.regressor_w(output))
predict_hi = self.relu(self.regressor_hi(output))
return predict_cls, predict_h, predict_b, predict_w, predict_hi
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
plt.savefig(f'images/preds/prediction.png')
def train_model(model, device, dataloaders, dataset_sizes, num_epochs=25):
since = time.time()
ce = nn.CrossEntropyLoss()
mse = nn.MSELoss()
optimizer = optim.AdamW(model.parameters(), lr=0.0008)
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch+1}/{num_epochs}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_ce_loss = 0.0
running_rmse_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels, heights, bust, waist, hips in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
heights = heights.to(device)
bust = bust.to(device)
waist, hips = waist.to(device), hips.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
_, preds = torch.max(outputs_c, 1)
ce_loss = ce(outputs_c, labels)
rmse_loss_h = torch.sqrt(mse(outputs_h, heights.unsqueeze(-1)))
rmse_loss_b = torch.sqrt(mse(outputs_b, bust.unsqueeze(-1)))
rmse_loss_w = torch.sqrt(mse(outputs_w, waist.unsqueeze(-1)))
rmse_loss_hi = torch.sqrt(mse(outputs_hi, hips.unsqueeze(-1)))
rmse_loss = rmse_loss_h*4 + rmse_loss_b*2 + rmse_loss_w + rmse_loss_hi
loss = ce_loss + (rmse_loss)*1
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
# statistics
running_ce_loss += ce_loss.item() * inputs.size(0)
running_rmse_loss += rmse_loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_ce_loss = running_ce_loss / dataset_sizes[phase]
epoch_rmse_loss = running_rmse_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} CE_Loss: {epoch_ce_loss:.4f} RMSE_Loss: {epoch_rmse_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
#if epoch %2 == 0 and phase == 'val':print(outputs_c, outputs_h)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(best_model_wts)
return model
def visualize_model(model, device, dataloaders, class_names, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'pred: {class_names[preds[j]]}|tar: {class_names[labels[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
def evaluation(model, epoch, device, dataloaders):
model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
model.eval()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
print(preds)
def inference(inp_img, classes = ['big', 'small'], epoch = 6):
device = torch.device("cuda")
translator= Translator(to_lang="zh-TW")
model = CUPredictor().to(device)
model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
# load image-to-text model
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
trans = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image_tensor = trans(inp_img)
image_tensor = image_tensor.unsqueeze(0)
with torch.no_grad():
inputs = image_tensor.to(device)
outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
_, preds = torch.max(outputs_c, 1)
idx = preds.numpy()[0]
# unconditional image captioning
inputs = processor(inp_img, return_tensors="pt")
out = model_blip.generate(**inputs)
description = processor.decode(out[0], skip_special_tokens=True)
description_tw = translator.translate(description)
return outputs_c, classes[idx], f"{outputs_h.numpy()[0][0]:.2f}", f"{outputs_b.numpy()[0][0]:.2f}", f"{outputs_w.numpy()[0][0]:.2f}", f"{outputs_hi.numpy()[0][0]:.2f}", [description, description_tw]
def main(epoch = 15, mode = 'val'):
cudnn.benchmark = True
plt.ion() # interactive mode
model = CUPredictor()
train_dataset = imgDataset('labels.txt', mode='train', use_processor=False)
test_dataset = imgDataset('labels.txt', mode='val', use_processor=False)
dataloaders = {
"train": DataLoader(train_dataset, batch_size=64, shuffle=True),
"val": DataLoader(test_dataset, batch_size=64, shuffle=False)
}
dataset_sizes = {
"train": len(train_dataset),
"val": len(test_dataset)
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#device = torch.device("cpu")
model = model.to(device)
model_conv = train_model(model, device, dataloaders, dataset_sizes, num_epochs=epoch)
torch.save(model_conv.state_dict(), f'models/model_{epoch}.pt')
def divide_class_dir(path):
file_list = os.listdir(path)
for img_name in file_list:
dest_path = os.path.join(path, img_name.split('-')[3])
if not os.path.exists(dest_path):
os.mkdir(dest_path) # 建立資料夾
os.replace(os.path.join(path, img_name), os.path.join(dest_path, img_name))
def get_label(types):
with open('labels.txt', 'w', encoding='utf-8') as f:
for f_type in types:
for img_type in CLASS:
path = os.path.join('images', f_type, img_type)
file_list = os.listdir(path)
for file_name in file_list:
file_name_list = file_name.split('-')
f.write(" ".join([f_type, file_name, img_type, file_name_list[4].split('_')[0], '\n']))
if __name__ == "__main__":
CLASS = ['big', 'small']
mode = 'train'
get_label(['train', 'val'])
epoch = 7
#main(epoch, mode = mode)
outputs, preds, heights, bust, waist, hips, description = inference('images/test/lin.png', CLASS, epoch=epoch)
print(outputs, preds, heights, bust, waist, hips)
#print(CUPredictor())
#divide_class_dir('./images/train_all')
#divide_class_dir('./images/val_all')
'''''' |