Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,128 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
torch_dtype=torch.bfloat16,
|
8 |
-
trust_remote_code=True,
|
9 |
-
device_map="auto",
|
10 |
-
low_cpu_mem_usage=True,
|
11 |
-
)
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance")
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
global output_text
|
17 |
|
18 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
19 |
-
attention_mask = torch.ones(input_ids.shape)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
)
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
print(output_text)
|
34 |
|
35 |
-
# Remove Prompt Echo from Generated Text
|
36 |
-
|
37 |
-
cleaned_output_text = output_text.replace(input_text, "")
|
38 |
-
return cleaned_output_text
|
39 |
|
40 |
-
block = gr.Blocks()
|
41 |
|
42 |
|
43 |
-
with block:
|
44 |
-
gr.Markdown("""<h1><center>CogwiseAI falcon7b</center></h1>
|
45 |
-
""")
|
46 |
-
# chatbot = gr.Chatbot()
|
47 |
-
message = gr.Textbox(placeholder='Enter Your Question Here')
|
48 |
-
state = gr.State()
|
49 |
-
submit = gr.Button("SEND")
|
50 |
-
submit.click(generate_text, inputs=[message, state], outputs=[output_text, state])
|
51 |
|
52 |
-
block.launch(debug = True)
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
# import torch
|
4 |
+
|
5 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
6 |
+
# "Cogwisechat/falcon-7b-finance",
|
7 |
+
# torch_dtype=torch.bfloat16,
|
8 |
+
# trust_remote_code=True,
|
9 |
+
# device_map="auto",
|
10 |
+
# low_cpu_mem_usage=True,
|
11 |
+
# )
|
12 |
+
# tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance")
|
13 |
+
|
14 |
+
|
15 |
+
# def generate_text(input_text):
|
16 |
+
# global output_text
|
17 |
+
|
18 |
+
# input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
19 |
+
# attention_mask = torch.ones(input_ids.shape)
|
20 |
+
|
21 |
+
# output = model.generate(
|
22 |
+
# input_ids,
|
23 |
+
# attention_mask=attention_mask,
|
24 |
+
# max_length=200,
|
25 |
+
# do_sample=True,
|
26 |
+
# top_k=10,
|
27 |
+
# num_return_sequences=1,
|
28 |
+
# eos_token_id=tokenizer.eos_token_id,
|
29 |
+
# )
|
30 |
+
|
31 |
|
32 |
+
# output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
+
# print(output_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# # Remove Prompt Echo from Generated Text
|
36 |
+
|
37 |
+
# cleaned_output_text = output_text.replace(input_text, "")
|
38 |
+
# return cleaned_output_text
|
39 |
|
40 |
+
# block = gr.Blocks()
|
|
|
41 |
|
|
|
|
|
42 |
|
43 |
+
# with block:
|
44 |
+
# gr.Markdown("""<h1><center>CogwiseAI falcon7b</center></h1>
|
45 |
+
# """)
|
46 |
+
# # chatbot = gr.Chatbot()
|
47 |
+
# message = gr.Textbox(placeholder='Enter Your Question Here')
|
48 |
+
# state = gr.State()
|
49 |
+
# submit = gr.Button("SEND")
|
50 |
+
# submit.click(generate_text, inputs=[message, state], outputs=[output_text, state])
|
|
|
|
|
51 |
|
52 |
+
# block.launch(debug = True)
|
|
|
53 |
|
|
|
|
|
|
|
|
|
54 |
|
|
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
|
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
63 |
+
|
64 |
|
65 |
+
# # logo = (
|
66 |
+
# # "<div >"
|
67 |
+
# # "<img src='ai-icon.png'alt='image One'>"
|
68 |
+
# # + "</div>"
|
69 |
+
# # )
|
70 |
+
# # text_generation_interface = gr.Interface(
|
71 |
+
# # fn=generate_text,
|
72 |
+
# # inputs=[
|
73 |
+
# # gr.inputs.Textbox(label="Input Text"),
|
74 |
+
# # ],
|
75 |
+
# # outputs=gr.inputs.Textbox(label="Generated Text"),
|
76 |
+
# # title="Falcon-7B Instruct",
|
77 |
+
# # image=logo
|
78 |
+
# # ).launch()
|
79 |
|
80 |
|
81 |
|
82 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
+
import gradio as gr
|
84 |
+
import torch
|
85 |
|
|
|
86 |
|
87 |
+
title = "🤖AI ChatBot"
|
88 |
+
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
|
89 |
+
examples = [["How are you?"]]
|
90 |
+
|
91 |
+
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance")
|
93 |
+
model = AutoModelForCausalLM.from_pretrained("Cogwisechat/falcon-7b-finance")
|
94 |
+
|
95 |
+
|
96 |
+
def predict(input, history=[]):
|
97 |
+
# tokenize the new input sentence
|
98 |
+
new_user_input_ids = tokenizer.encode(
|
99 |
+
input + tokenizer.eos_token, return_tensors="pt"
|
100 |
+
)
|
101 |
+
|
102 |
+
# append the new user input tokens to the chat history
|
103 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
104 |
+
|
105 |
+
# generate a response
|
106 |
+
history = model.generate(
|
107 |
+
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
|
108 |
+
).tolist()
|
109 |
+
|
110 |
+
# convert the tokens to text, and then split the responses into lines
|
111 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
112 |
+
# print('decoded_response-->>'+str(response))
|
113 |
+
response = [
|
114 |
+
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
115 |
+
] # convert to tuples of list
|
116 |
+
# print('response-->>'+str(response))
|
117 |
+
return response, history
|
118 |
+
|
119 |
+
|
120 |
+
gr.Interface(
|
121 |
+
fn=predict,
|
122 |
+
title=title,
|
123 |
+
description=description,
|
124 |
+
examples=examples,
|
125 |
+
inputs=["text", "state"],
|
126 |
+
outputs=["chatbot", "state"],
|
127 |
+
theme="finlaymacklon/boxy_violet",
|
128 |
+
).launch()
|