# import gradio as gr # from transformers import AutoTokenizer, AutoModelForCausalLM # import torch # model = AutoModelForCausalLM.from_pretrained( # "Cogwisechat/falcon-7b-finance", # torch_dtype=torch.bfloat16, # trust_remote_code=True, # device_map="auto", # low_cpu_mem_usage=True, # ) # tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance") # def generate_text(input_text): # global output_text # input_ids = tokenizer.encode(input_text, return_tensors="pt") # attention_mask = torch.ones(input_ids.shape) # output = model.generate( # input_ids, # attention_mask=attention_mask, # max_length=200, # do_sample=True, # top_k=10, # num_return_sequences=1, # eos_token_id=tokenizer.eos_token_id, # ) # output_text = tokenizer.decode(output[0], skip_special_tokens=True) # print(output_text) # # Remove Prompt Echo from Generated Text # cleaned_output_text = output_text.replace(input_text, "") # return cleaned_output_text # block = gr.Blocks() # with block: # gr.Markdown("""

CogwiseAI falcon7b

# """) # # chatbot = gr.Chatbot() # message = gr.Textbox(placeholder='Enter Your Question Here') # state = gr.State() # submit = gr.Button("SEND") # submit.click(generate_text, inputs=[message, state], outputs=[output_text, state]) # block.launch(debug = True) # # logo = ( # # "
" # # "image One" # # + "
" # # ) # # text_generation_interface = gr.Interface( # # fn=generate_text, # # inputs=[ # # gr.inputs.Textbox(label="Input Text"), # # ], # # outputs=gr.inputs.Textbox(label="Generated Text"), # # title="Falcon-7B Instruct", # # image=logo # # ).launch() from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch title = "🤖AI ChatBot" description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" examples = [["How are you?"]] tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance") model = AutoModelForCausalLM.from_pretrained("Cogwisechat/falcon-7b-finance") def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors="pt" ) # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") # print('decoded_response-->>'+str(response)) response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list # print('response-->>'+str(response)) return response, history gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=["text", "state"], outputs=["chatbot", "state"], theme="finlaymacklon/boxy_violet", ).launch()