# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
# model = AutoModelForCausalLM.from_pretrained(
# "Cogwisechat/falcon-7b-finance",
# torch_dtype=torch.bfloat16,
# trust_remote_code=True,
# device_map="auto",
# low_cpu_mem_usage=True,
# )
# tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance")
# def generate_text(input_text):
# global output_text
# input_ids = tokenizer.encode(input_text, return_tensors="pt")
# attention_mask = torch.ones(input_ids.shape)
# output = model.generate(
# input_ids,
# attention_mask=attention_mask,
# max_length=200,
# do_sample=True,
# top_k=10,
# num_return_sequences=1,
# eos_token_id=tokenizer.eos_token_id,
# )
# output_text = tokenizer.decode(output[0], skip_special_tokens=True)
# print(output_text)
# # Remove Prompt Echo from Generated Text
# cleaned_output_text = output_text.replace(input_text, "")
# return cleaned_output_text
# block = gr.Blocks()
# with block:
# gr.Markdown("""
CogwiseAI falcon7b
# """)
# # chatbot = gr.Chatbot()
# message = gr.Textbox(placeholder='Enter Your Question Here')
# state = gr.State()
# submit = gr.Button("SEND")
# submit.click(generate_text, inputs=[message, state], outputs=[output_text, state])
# block.launch(debug = True)
# # logo = (
# # ""
# # "
"
# # + "
"
# # )
# # text_generation_interface = gr.Interface(
# # fn=generate_text,
# # inputs=[
# # gr.inputs.Textbox(label="Input Text"),
# # ],
# # outputs=gr.inputs.Textbox(label="Generated Text"),
# # title="Falcon-7B Instruct",
# # image=logo
# # ).launch()
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "🤖AI ChatBot"
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("Cogwisechat/falcon-7b-finance")
model = AutoModelForCausalLM.from_pretrained("Cogwisechat/falcon-7b-finance")
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(
input + tokenizer.eos_token, return_tensors="pt"
)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
# print('decoded_response-->>'+str(response))
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # convert to tuples of list
# print('response-->>'+str(response))
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme="finlaymacklon/boxy_violet",
).launch()