KubeWizard / app.py
tamas.kiss
bugfix: Removed conversion to list
052aaff
raw
history blame
20 kB
import torch
import pickle
import os
import numpy as np
import hashlib
import gradio as gr
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from torch import nn
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers import SentenceTransformer
from peft import PeftModel
from bs4 import BeautifulSoup
import requests
import logging
from pinecone import Pinecone, ServerlessSpec
from openai import OpenAI
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO)
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
"Accept": "text/html,application/xhtml+xml,application/xml; q=0.9,image/webp,*/*;q=0.8",
"Cookie": "CONSENT=YES+cb.20210418-17-p0.it+FX+917; ",
}
PINECONE_INDEX_NAME = "kubwizzard"
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
INDEX_NAME = "k8s-semantic-search"
CACHE_DIR = "./.cache"
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")
pinecone_client = Pinecone(api_key=PINECONE_API_KEY)
openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
def google_search(text):
logging.info(f"Google search on: {text}")
try:
site = requests.get(f"https://www.google.com/search?hl=en&q={text}", headers=headers)
main = (
BeautifulSoup(site.text, features="html.parser").select_one("#main").select(".VwiC3b.lyLwlc.yDYNvb.W8l4ac")
)
res = []
for m in main:
t = m.get_text()
if "—" in t:
t = t[len("—") + t.index("—") :].strip()
res.append(t)
ans = " \n".join(res)
except Exception as ex:
logging.error(f"Error: {ex}")
ans = ""
logging.info(f"The result of the google search is: {ans}")
return ans
def cached(func):
def wrapper(*args, **kwargs):
SEP = "$|$"
cache_token = (
f"{func.__name__}{SEP}"
f"{SEP.join(str(arg) for arg in args)}{SEP}"
f"{SEP.join( str(key) + SEP * 2 + str(val) for key, val in kwargs.items())}"
)
hex_hash = hashlib.sha256(cache_token.encode()).hexdigest()
cache_filename: str = os.path.join(CACHE_DIR, f"{hex_hash}")
if os.path.exists(cache_filename):
with open(cache_filename, "rb") as cache_file:
return pickle.load(cache_file)
result = func(*args, **kwargs)
with open(cache_filename, "wb") as cache_file:
pickle.dump(result, cache_file)
return result
return wrapper
@cached
def create_embedding(text: str):
embed_text = openai.embeddings.create(input=text, model="text-embedding-ada-002").data[0].embedding
return embed_text
def query_from_pinecone(query, top_k=3):
embedding = create_embedding(query)
if not embedding:
return None
return pinecone_client.Index(PINECONE_INDEX_NAME).query(vector=embedding, top_k=top_k, include_metadata=True).get("matches") # gets the metadata (text)
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
if not results_from_pinecone:
return []
if verbose:
logging.info(f"Query: {query}")
final_results = []
if re_rank:
if verbose:
logging.info("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText")
sentence_combinations = [
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
]
# Compute the similarity scores for these combinations
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
# Sort the scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Print the scores
for idx in sim_scores_argsort:
result_from_pinecone = results_from_pinecone[idx]
final_results.append(result_from_pinecone)
if verbose:
logging.info(
f"{result_from_pinecone['id']:<4}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
)
return final_results
if verbose:
logging.info("Document ID (Hash)\t\tRetrieval Score\tText")
for result_from_pinecone in results_from_pinecone:
final_results.append(result_from_pinecone)
if verbose:
logging.info(
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
)
return final_results
def semantic_search(prompt):
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
if not final_results:
return ""
return "\n\n".join(res["metadata"]["text"].strip() for res in final_results[:3])
base_model_id = "mistralai/Mistral-7B-Instruct-v0.1"
lora_model_id = "ComponentSoft/mistral-kubectl-instruct"
tokenizer = AutoTokenizer.from_pretrained(
lora_model_id,
padding_side="left",
add_eos_token=False,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
use_cache=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()
def create_stop_criterion(*args):
term_tokens = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in args]
class CustomStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e) :]) for e in term_tokens)
return CustomStopCriterion()
eval_stop_criterion = create_stop_criterion("</s>", "#End")
category_stop_criterion = create_stop_criterion("</s>", "\n")
start_template = "### Answer:"
command_template = "# Command:"
end_template = "#End"
def str_to_md(text):
def escape_hash(line):
i = 0
while i < len(line) and line[i] == ' ':
i+=1
if i == len(line):
return line
if line[i] == '#':
line = line[:i] + '\\' + line[i:]
return line
lines = text.split('\n')
lines = [escape_hash(line) for line in lines]
return ' \n'.join(l if not all(c == '-' for c in l) else '_'*len(l) for l in lines)
def text_to_text_generation(verbose, prompt):
prompt = prompt.strip()
is_kubectl_prompt = (
f"You are a helpful assistant who classifies prompts into three categories. [INST] Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
f"Here are some examples:\n"
f"text: List all pods in Kubernetes\n"
f"response (0/1/2): 0 \n"
f"text: What is a headless service and how to create one?\n"
f"response (0/1/2): 1 \n"
f"text: What is the capital of Hungary?\n"
f"response (0/1/2): 2 \n"
f"text: Display detailed information about the pod 'web-app-pod-1'\n"
f"response (0/1/2): 0 \n"
f"text: What are some typical foods in Germany?\n"
f"response (0/1/2): 2 \n"
f"text: What is a LoadBalancer in Kubernetes?\n"
f"response (0/1/2): 1 \n"
f"text: How can I enhance the performance of a k8s cluster?\n"
f"response (0/1/2): 1 \n"
f'Classify the following: [/INST] \ntext: "{prompt}\n"'
f"response (0/1/2): "
)
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(
model.generate(
**model_input,
max_new_tokens=8,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
stopping_criteria=StoppingCriteriaList([category_stop_criterion]),
)[0],
skip_special_tokens=True,
)
response = response[len(is_kubectl_prompt) :]
response_num = 0 if "0" in response else (1 if "1" in response else 2)
def create_generation_prompt(response_num, prompt, retriever):
md = ""
match response_num:
case 0:
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"
logging.info('Kubectl command prompt:')
logging.info(prompt)
case 1:
if retriever == "semantic_search":
question = prompt
logging.info('Semantic search prompt:')
logging.info(
(
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer: \n")
)
retrieved_results = semantic_search(prompt)
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer:\n\n"
md = (
f"### Step 1: Preparing prompt for additional documentation \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: \n\n"
f"### Step 2: Retrieving documentation from a book. \n\n"
f"{str_to_md(retrieved_results)} \n\n"
f"### Step 3: Creating full prompt given to model \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer:"
)
elif retriever == "google_search":
retrieved_results = google_search(prompt)
question = prompt
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
logging.info('Google search prompt:')
logging.info(
(
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:\n\n"
)
)
md = (
f"### Step 1: Preparing prompt for additional documentation \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: \n\n"
f"### Step 2: Retrieving documentation from Google. \n\n"
f"{str_to_md(retrieved_results)} \n\n"
f"### Step 3: Creating full prompt given to model \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:"
)
else:
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "
logging.info('No retriever question prompt:')
logging.info(prompt)
case _:
prompt = f"[INST] {prompt} [/INST]"
logging.info('Other question prompt:')
logging.info(prompt)
return prompt, md
def generate_batch(*prompts):
tokenized_inputs = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda")
with torch.no_grad():
responses = tokenizer.batch_decode(
model.generate(
**tokenized_inputs,
max_new_tokens=256,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
stopping_criteria=StoppingCriteriaList([eval_stop_criterion]),
),
skip_special_tokens=True,
)
decoded_prompts = tokenizer.batch_decode(tokenized_inputs.input_ids, skip_special_tokens=True)
return [(prompt, answer) for prompt, answer in zip(decoded_prompts, responses)]
def cleanup(prompt, answer):
start = answer.index(start_template) + len(start_template) if start_template in answer else len(prompt)
start = answer.index(command_template) + len(command_template) if command_template in answer else start
end = answer.index(end_template) if end_template in answer else len(answer)
return (prompt, answer[start:end].strip())
modes = ["Kubectl command", "Kubernetes related", "Other"]
logging.info(f'{" Query Start ":-^40}')
logging.info(f"Classified as: {modes[response_num]}")
modes[response_num] = f"**{modes[response_num]}**"
modes = " / ".join(modes)
if response_num == 2:
prompt, md = create_generation_prompt(response_num, prompt, False)
original, new = generate_batch(prompt)[0]
prompt, response = cleanup(original, new)
if verbose:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Prompt given to the model:\n"
f"{str_to_md(prompt)}\n"
f"# Model's answer:\n" f"{str_to_md(response)}\n"
)
else:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Answer:\n" f"{str_to_md(response)}"
)
if response_num == 0:
prompt, md = create_generation_prompt(response_num, prompt, False)
original, new = generate_batch(prompt)[0]
prompt, response = cleanup(original, new)
model_response = new[len(original):].strip()
if verbose:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Prompt given to the model:\n"
f"{str_to_md(prompt)}\n"
f"# Model's answer:\n"
f"{str_to_md(model_response)}\n"
f"# Processed answer:\n"
f"```bash\n{str_to_md(response)}\n```\n"
)
else:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Answer:\n" f"```bash\n{str_to_md(response)}\n```\n"
)
res_prompt, res_md = create_generation_prompt(response_num, prompt, False)
res_semantic_search_prompt, res_semantic_search_md = create_generation_prompt(response_num, prompt, "semantic_search")
res_google_search_prompt, res_google_search_md = create_generation_prompt(response_num, prompt, "google_search")
gen_normal, gen_semantic_search, gen_google_search = generate_batch(
res_prompt, res_semantic_search_prompt, res_google_search_prompt
)
logging.info(f"SEMANTIC BEFORE CLEANUP: {str(gen_semantic_search)}")
logging.info(f"GOOGLE BEFORE CLEANUP: {str(gen_google_search)}")
res_prompt, res_normal = cleanup(*gen_normal)
res_semantic_search_prompt, res_semantic_search = cleanup(*gen_semantic_search)
res_google_search_prompt, res_google_search = cleanup(*gen_google_search)
logging.info(f"SEMANTIC AFTER CLEANUP: {str(res_semantic_search)}")
logging.info(f"GOOGLE AFTER CLEANUP: {str(res_google_search)}")
if verbose:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"--------------------------------------------\n"
f"# Answer with finetuned model\n"
f"## Prompt given to the model:\n"
f"{str_to_md(res_prompt)}\n\n"
f"## Model's answer:\n"
f"{str_to_md(res_normal)}\n\n"
f"--------------------------------------------\n"
f"# Answer with RAG\n"
f"## Section 1: Preparing for generation \n\n{res_semantic_search_md} \n\n"
f"## Section 2: Generating answer \n\n{str_to_md(res_semantic_search.strip())} \n\n"
f"--------------------------------------------\n"
f"# Answer with Google search\n"
f"## Section 1: Preparing for generation \n\n{res_google_search_md} \n\n"
f"## Section 2: Generating answer \n\n{str_to_md(res_google_search.strip())} \n\n"
)
else:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Answer with finetuned model \n\n{str_to_md(res_normal)} \n\n"
f"# Answer with RAG \n\n{str_to_md(res_semantic_search.strip())} \n\n"
f"# Answer with Google search \n\n{str_to_md(res_google_search)} \n\n"
)
iface = gr.Interface(
fn=text_to_text_generation,
inputs=[
gr.components.Checkbox(label="Verbose"),
gr.components.Text(placeholder="prompt here ...", label="Prompt"),
],
outputs=gr.components.Markdown(label="Answer"),
allow_flagging="never",
title="📚KubeWizard📚",
)
iface.launch()