Spaces:
Sleeping
Sleeping
import torch | |
import pickle | |
import os | |
import numpy as np | |
import hashlib | |
import gradio as gr | |
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
from torch import nn | |
from sentence_transformers.cross_encoder import CrossEncoder | |
from sentence_transformers import SentenceTransformer | |
from peft import PeftModel | |
from bs4 import BeautifulSoup | |
import requests | |
import logging | |
from pinecone import Pinecone, ServerlessSpec | |
from openai import OpenAI | |
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO) | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome", | |
"Accept": "text/html,application/xhtml+xml,application/xml; q=0.9,image/webp,*/*;q=0.8", | |
"Cookie": "CONSENT=YES+cb.20210418-17-p0.it+FX+917; ", | |
} | |
PINECONE_INDEX_NAME = "kubwizzard" | |
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY") | |
INDEX_NAME = "k8s-semantic-search" | |
CACHE_DIR = "./.cache" | |
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2") | |
pinecone_client = Pinecone(api_key=PINECONE_API_KEY) | |
openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
if not os.path.exists(CACHE_DIR): | |
os.makedirs(CACHE_DIR) | |
def google_search(text): | |
logging.info(f"Google search on: {text}") | |
try: | |
site = requests.get(f"https://www.google.com/search?hl=en&q={text}", headers=headers) | |
main = ( | |
BeautifulSoup(site.text, features="html.parser").select_one("#main").select(".VwiC3b.lyLwlc.yDYNvb.W8l4ac") | |
) | |
res = [] | |
for m in main: | |
t = m.get_text() | |
if "—" in t: | |
t = t[len("—") + t.index("—") :].strip() | |
res.append(t) | |
ans = " \n".join(res) | |
except Exception as ex: | |
logging.error(f"Error: {ex}") | |
ans = "" | |
logging.info(f"The result of the google search is: {ans}") | |
return ans | |
def cached(func): | |
def wrapper(*args, **kwargs): | |
SEP = "$|$" | |
cache_token = ( | |
f"{func.__name__}{SEP}" | |
f"{SEP.join(str(arg) for arg in args)}{SEP}" | |
f"{SEP.join( str(key) + SEP * 2 + str(val) for key, val in kwargs.items())}" | |
) | |
hex_hash = hashlib.sha256(cache_token.encode()).hexdigest() | |
cache_filename: str = os.path.join(CACHE_DIR, f"{hex_hash}") | |
if os.path.exists(cache_filename): | |
with open(cache_filename, "rb") as cache_file: | |
return pickle.load(cache_file) | |
result = func(*args, **kwargs) | |
with open(cache_filename, "wb") as cache_file: | |
pickle.dump(result, cache_file) | |
return result | |
return wrapper | |
def create_embedding(text: str): | |
embed_text = openai.embeddings.create(input=text, model="text-embedding-ada-002").data[0].embedding | |
return embed_text | |
def query_from_pinecone(query, top_k=3): | |
embedding = create_embedding(query) | |
if not embedding: | |
return None | |
return pinecone_client.Index(PINECONE_INDEX_NAME).query(vector=embedding, top_k=top_k, include_metadata=True).get("matches") # gets the metadata (text) | |
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True): | |
results_from_pinecone = query_from_pinecone(query, top_k=top_k) | |
if not results_from_pinecone: | |
return [] | |
if verbose: | |
logging.info(f"Query: {query}") | |
final_results = [] | |
if re_rank: | |
if verbose: | |
logging.info("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText") | |
sentence_combinations = [ | |
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone | |
] | |
# Compute the similarity scores for these combinations | |
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid()) | |
# Sort the scores in decreasing order | |
sim_scores_argsort = reversed(np.argsort(similarity_scores)) | |
# Print the scores | |
for idx in sim_scores_argsort: | |
result_from_pinecone = results_from_pinecone[idx] | |
final_results.append(result_from_pinecone) | |
if verbose: | |
logging.info( | |
f"{result_from_pinecone['id']:<4}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}" | |
) | |
return final_results | |
if verbose: | |
logging.info("Document ID (Hash)\t\tRetrieval Score\tText") | |
for result_from_pinecone in results_from_pinecone: | |
final_results.append(result_from_pinecone) | |
if verbose: | |
logging.info( | |
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}" | |
) | |
return final_results | |
def semantic_search(prompt): | |
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True) | |
if not final_results: | |
return "" | |
return "\n\n".join(res["metadata"]["text"].strip() for res in final_results[:3]) | |
base_model_id = "mistralai/Mistral-7B-Instruct-v0.1" | |
lora_model_id = "ComponentSoft/mistral-kubectl-instruct" | |
tokenizer = AutoTokenizer.from_pretrained( | |
lora_model_id, | |
padding_side="left", | |
add_eos_token=False, | |
add_bos_token=True, | |
) | |
tokenizer.pad_token = tokenizer.eos_token | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
quantization_config=bnb_config, | |
use_cache=True, | |
trust_remote_code=True, | |
) | |
model = PeftModel.from_pretrained(base_model, lora_model_id) | |
model.eval() | |
def create_stop_criterion(*args): | |
term_tokens = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in args] | |
class CustomStopCriterion(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs): | |
return any(torch.equal(e, input_ids[0][-len(e) :]) for e in term_tokens) | |
return CustomStopCriterion() | |
eval_stop_criterion = create_stop_criterion("</s>", "#End") | |
category_stop_criterion = create_stop_criterion("</s>", "\n") | |
start_template = "### Answer:" | |
command_template = "# Command:" | |
end_template = "#End" | |
def str_to_md(text): | |
def escape_hash(line): | |
i = 0 | |
while i < len(line) and line[i] == ' ': | |
i+=1 | |
if i == len(line): | |
return line | |
if line[i] == '#': | |
line = line[:i] + '\\' + line[i:] | |
return line | |
lines = text.split('\n') | |
lines = [escape_hash(line) for line in lines] | |
return ' \n'.join(l if not all(c == '-' for c in l) else '_'*len(l) for l in lines) | |
def text_to_text_generation(verbose, prompt): | |
prompt = prompt.strip() | |
is_kubectl_prompt = ( | |
f"You are a helpful assistant who classifies prompts into three categories. [INST] Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n" | |
f"Here are some examples:\n" | |
f"text: List all pods in Kubernetes\n" | |
f"response (0/1/2): 0 \n" | |
f"text: What is a headless service and how to create one?\n" | |
f"response (0/1/2): 1 \n" | |
f"text: What is the capital of Hungary?\n" | |
f"response (0/1/2): 2 \n" | |
f"text: Display detailed information about the pod 'web-app-pod-1'\n" | |
f"response (0/1/2): 0 \n" | |
f"text: What are some typical foods in Germany?\n" | |
f"response (0/1/2): 2 \n" | |
f"text: What is a LoadBalancer in Kubernetes?\n" | |
f"response (0/1/2): 1 \n" | |
f"text: How can I enhance the performance of a k8s cluster?\n" | |
f"response (0/1/2): 1 \n" | |
f'Classify the following: [/INST] \ntext: "{prompt}\n"' | |
f"response (0/1/2): " | |
) | |
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda") | |
with torch.no_grad(): | |
response = tokenizer.decode( | |
model.generate( | |
**model_input, | |
max_new_tokens=8, | |
pad_token_id=tokenizer.eos_token_id, | |
repetition_penalty=1.15, | |
stopping_criteria=StoppingCriteriaList([category_stop_criterion]), | |
)[0], | |
skip_special_tokens=True, | |
) | |
response = response[len(is_kubectl_prompt) :] | |
response_num = 0 if "0" in response else (1 if "1" in response else 2) | |
def create_generation_prompt(response_num, prompt, retriever): | |
md = "" | |
match response_num: | |
case 0: | |
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}" | |
logging.info('Kubectl command prompt:') | |
logging.info(prompt) | |
case 1: | |
if retriever == "semantic_search": | |
question = prompt | |
logging.info('Semantic search prompt:') | |
logging.info( | |
( | |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer: \n") | |
) | |
retrieved_results = semantic_search(prompt) | |
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer:\n\n" | |
md = ( | |
f"### Step 1: Preparing prompt for additional documentation \n\n" | |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: \n\n" | |
f"### Step 2: Retrieving documentation from a book. \n\n" | |
f"{str_to_md(retrieved_results)} \n\n" | |
f"### Step 3: Creating full prompt given to model \n\n" | |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer:" | |
) | |
elif retriever == "google_search": | |
retrieved_results = google_search(prompt) | |
question = prompt | |
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: " | |
logging.info('Google search prompt:') | |
logging.info( | |
( | |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:\n\n" | |
) | |
) | |
md = ( | |
f"### Step 1: Preparing prompt for additional documentation \n\n" | |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: \n\n" | |
f"### Step 2: Retrieving documentation from Google. \n\n" | |
f"{str_to_md(retrieved_results)} \n\n" | |
f"### Step 3: Creating full prompt given to model \n\n" | |
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:" | |
) | |
else: | |
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: " | |
logging.info('No retriever question prompt:') | |
logging.info(prompt) | |
case _: | |
prompt = f"[INST] {prompt} [/INST]" | |
logging.info('Other question prompt:') | |
logging.info(prompt) | |
return prompt, md | |
def generate_batch(*prompts): | |
tokenized_inputs = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda") | |
with torch.no_grad(): | |
responses = tokenizer.batch_decode( | |
model.generate( | |
**tokenized_inputs, | |
max_new_tokens=256, | |
pad_token_id=tokenizer.eos_token_id, | |
repetition_penalty=1.15, | |
stopping_criteria=StoppingCriteriaList([eval_stop_criterion]), | |
), | |
skip_special_tokens=True, | |
) | |
decoded_prompts = tokenizer.batch_decode(tokenized_inputs.input_ids, skip_special_tokens=True) | |
return [(prompt, answer) for prompt, answer in zip(decoded_prompts, responses)] | |
def cleanup(prompt, answer): | |
start = answer.index(start_template) + len(start_template) if start_template in answer else len(prompt) | |
start = answer.index(command_template) + len(command_template) if command_template in answer else start | |
end = answer.index(end_template) if end_template in answer else len(answer) | |
return (prompt, answer[start:end].strip()) | |
modes = ["Kubectl command", "Kubernetes related", "Other"] | |
logging.info(f'{" Query Start ":-^40}') | |
logging.info(f"Classified as: {modes[response_num]}") | |
modes[response_num] = f"**{modes[response_num]}**" | |
modes = " / ".join(modes) | |
if response_num == 2: | |
prompt, md = create_generation_prompt(response_num, prompt, False) | |
original, new = generate_batch(prompt)[0] | |
prompt, response = cleanup(original, new) | |
if verbose: | |
return ( | |
f"# 📚KubeWizard📚\n" | |
f"#### A helpful Kubernetes Assistant powered by Component Soft\n" | |
f"--------------------------------------------\n" | |
f"# Classified your prompt as:\n" | |
f"{modes}\n\n" | |
f"# Prompt given to the model:\n" | |
f"{str_to_md(prompt)}\n" | |
f"# Model's answer:\n" f"{str_to_md(response)}\n" | |
) | |
else: | |
return ( | |
f"# 📚KubeWizard📚\n" | |
f"#### A helpful Kubernetes Assistant powered by Component Soft\n" | |
f"--------------------------------------------\n" | |
f"# Classified your prompt as:\n" | |
f"{modes}\n\n" | |
f"# Answer:\n" f"{str_to_md(response)}" | |
) | |
if response_num == 0: | |
prompt, md = create_generation_prompt(response_num, prompt, False) | |
original, new = generate_batch(prompt)[0] | |
prompt, response = cleanup(original, new) | |
model_response = new[len(original):].strip() | |
if verbose: | |
return ( | |
f"# 📚KubeWizard📚\n" | |
f"#### A helpful Kubernetes Assistant powered by Component Soft\n" | |
f"--------------------------------------------\n" | |
f"# Classified your prompt as:\n" | |
f"{modes}\n\n" | |
f"# Prompt given to the model:\n" | |
f"{str_to_md(prompt)}\n" | |
f"# Model's answer:\n" | |
f"{str_to_md(model_response)}\n" | |
f"# Processed answer:\n" | |
f"```bash\n{str_to_md(response)}\n```\n" | |
) | |
else: | |
return ( | |
f"# 📚KubeWizard📚\n" | |
f"#### A helpful Kubernetes Assistant powered by Component Soft\n" | |
f"--------------------------------------------\n" | |
f"# Classified your prompt as:\n" | |
f"{modes}\n\n" | |
f"# Answer:\n" f"```bash\n{str_to_md(response)}\n```\n" | |
) | |
res_prompt, res_md = create_generation_prompt(response_num, prompt, False) | |
res_semantic_search_prompt, res_semantic_search_md = create_generation_prompt(response_num, prompt, "semantic_search") | |
res_google_search_prompt, res_google_search_md = create_generation_prompt(response_num, prompt, "google_search") | |
gen_normal, gen_semantic_search, gen_google_search = generate_batch( | |
res_prompt, res_semantic_search_prompt, res_google_search_prompt | |
) | |
logging.info(f"SEMANTIC BEFORE CLEANUP: {str(gen_semantic_search)}") | |
logging.info(f"GOOGLE BEFORE CLEANUP: {str(gen_google_search)}") | |
res_prompt, res_normal = cleanup(*gen_normal) | |
res_semantic_search_prompt, res_semantic_search = cleanup(*gen_semantic_search) | |
res_google_search_prompt, res_google_search = cleanup(*gen_google_search) | |
logging.info(f"SEMANTIC AFTER CLEANUP: {str(res_semantic_search)}") | |
logging.info(f"GOOGLE AFTER CLEANUP: {str(res_google_search)}") | |
if verbose: | |
return ( | |
f"# 📚KubeWizard📚\n" | |
f"#### A helpful Kubernetes Assistant powered by Component Soft\n" | |
f"--------------------------------------------\n" | |
f"# Classified your prompt as:\n" | |
f"{modes}\n\n" | |
f"--------------------------------------------\n" | |
f"# Answer with finetuned model\n" | |
f"## Prompt given to the model:\n" | |
f"{str_to_md(res_prompt)}\n\n" | |
f"## Model's answer:\n" | |
f"{str_to_md(res_normal)}\n\n" | |
f"--------------------------------------------\n" | |
f"# Answer with RAG\n" | |
f"## Section 1: Preparing for generation \n\n{res_semantic_search_md} \n\n" | |
f"## Section 2: Generating answer \n\n{str_to_md(res_semantic_search.strip())} \n\n" | |
f"--------------------------------------------\n" | |
f"# Answer with Google search\n" | |
f"## Section 1: Preparing for generation \n\n{res_google_search_md} \n\n" | |
f"## Section 2: Generating answer \n\n{str_to_md(res_google_search.strip())} \n\n" | |
) | |
else: | |
return ( | |
f"# 📚KubeWizard📚\n" | |
f"#### A helpful Kubernetes Assistant powered by Component Soft\n" | |
f"--------------------------------------------\n" | |
f"# Classified your prompt as:\n" | |
f"{modes}\n\n" | |
f"# Answer with finetuned model \n\n{str_to_md(res_normal)} \n\n" | |
f"# Answer with RAG \n\n{str_to_md(res_semantic_search.strip())} \n\n" | |
f"# Answer with Google search \n\n{str_to_md(res_google_search)} \n\n" | |
) | |
iface = gr.Interface( | |
fn=text_to_text_generation, | |
inputs=[ | |
gr.components.Checkbox(label="Verbose"), | |
gr.components.Text(placeholder="prompt here ...", label="Prompt"), | |
], | |
outputs=gr.components.Markdown(label="Answer"), | |
allow_flagging="never", | |
title="📚KubeWizard📚", | |
) | |
iface.launch() | |