KubeWizard / app.py
tmskss's picture
Update output format, batch inference
22b1013
raw
history blame
14 kB
import re
import torch
import time
import pinecone
import pickle
import os
import numpy as np
import hashlib
import gradio as gr
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from torch import nn
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers import SentenceTransformer
from peft import PeftModel
from bs4 import BeautifulSoup
import requests
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
"Accept": "text/html,application/xhtml+xml,application/xml; q=0.9,image/webp,*/*;q=0.8",
"Cookie": "CONSENT=YES+cb.20210418-17-p0.it+FX+917; ",
}
def google_search(text):
print(f"Google search on: {text}")
try:
site = requests.get(f"https://www.google.com/search?hl=en&q={text}", headers=headers)
main = (
BeautifulSoup(site.text, features="html.parser").select_one("#main").select(".VwiC3b.lyLwlc.yDYNvb.W8l4ac")
)
res = []
for m in main:
t = m.get_text()
if "β€”" in t:
t = t[len("β€”") + t.index("β€”") :].strip()
res.append(t)
ans = "\n".join(res)
except Exception as ex:
print(f"Error: {ex}")
ans = ""
print(f"The result of the google search is: {ans}")
return ans
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pinecone.init(api_key=PINECONE_API_KEY, environment="gcp-starter")
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
CACHE_DIR = "./.cache"
INDEX_NAME = "k8s-semantic-search"
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
def cached(func):
def wrapper(*args, **kwargs):
SEP = "$|$"
cache_token = (
f"{func.__name__}{SEP}"
f"{SEP.join(str(arg) for arg in args)}{SEP}"
f"{SEP.join( str(key) + SEP * 2 + str(val) for key, val in kwargs.items())}"
)
hex_hash = hashlib.sha256(cache_token.encode()).hexdigest()
cache_filename: str = os.path.join(CACHE_DIR, f"{hex_hash}")
if os.path.exists(cache_filename):
with open(cache_filename, "rb") as cache_file:
return pickle.load(cache_file)
result = func(*args, **kwargs)
with open(cache_filename, "wb") as cache_file:
pickle.dump(result, cache_file)
return result
return wrapper
@cached
def create_embedding(text: str):
embed_text = sentencetransformer_model.encode(text)
return embed_text.tolist()
index = pinecone.Index(INDEX_NAME)
def query_from_pinecone(query, top_k=3):
embedding = create_embedding(query)
if not embedding:
return None
return index.query(vector=embedding, top_k=top_k, include_metadata=True).get("matches") # gets the metadata (text)
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
if not results_from_pinecone:
return []
if verbose:
print("Query:", query)
final_results = []
if re_rank:
if verbose:
print("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText")
sentence_combinations = [
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
]
# Compute the similarity scores for these combinations
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
# Sort the scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Print the scores
for idx in sim_scores_argsort:
result_from_pinecone = results_from_pinecone[idx]
final_results.append(result_from_pinecone)
if verbose:
print(
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
)
return final_results
if verbose:
print("Document ID (Hash)\t\tRetrieval Score\tText")
for result_from_pinecone in results_from_pinecone:
final_results.append(result_from_pinecone)
if verbose:
print(
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
)
return final_results
def semantic_search(prompt):
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
if not final_results:
return ""
return "\n\n".join(res["metadata"]["text"].strip() for res in final_results[:3])
base_model_id = "mistralai/Mistral-7B-Instruct-v0.1"
lora_model_id = "ComponentSoft/mistral-kubectl-instruct"
tokenizer = AutoTokenizer.from_pretrained(
lora_model_id,
padding_side="left",
add_eos_token=False,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
use_cache=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()
def create_stop_criterion(*args):
term_tokens = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in args]
class CustomStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e) :]) for e in term_tokens)
return CustomStopCriterion()
eval_stop_criterion = create_stop_criterion("</s>", "#End")
category_stop_criterion = create_stop_criterion("</s>", "\n")
start_template = "### Answer:"
command_template = "# Command:"
end_template = "#End"
def str_to_md(text):
def escape_hash(line):
i = 0
while i < len(line) and line[i] == ' ':
i+=1
if i == len(line):
return line
if line[i] == '#':
line = line[:i] + '\\' + line[i:]
return line
lines = text.split('\n')
lines = [escape_hash(line) for line in lines]
return ' \n'.join(lines)
def text_to_text_generation(verbose, prompt):
prompt = prompt.strip()
is_kubectl_prompt = (
f"You are a helpful assistant who classifies prompts into three categories. [INST] Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
f"So for instance the following:\n"
f'text: "List all pods in Kubernetes"\n'
f"Would get a response:\n"
f"response (0/1/2): 0 [/INST] \n"
f'text: "{prompt}"'
f"response (0/1/2): "
)
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(
model.generate(
**model_input,
max_new_tokens=8,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
stopping_criteria=StoppingCriteriaList([category_stop_criterion]),
)[0],
skip_special_tokens=True,
)
response = response[len(is_kubectl_prompt) :]
print(f'{" Query Start ":-^40}')
print("Classified as: " + response)
response_num = 0 if "0" in response else (1 if "1" in response else 2)
def create_generation_prompt(response_num, prompt, retriever):
match response_num:
case 0:
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"
case 1:
if retriever == "semantic_search":
retrieved_results = semantic_search(prompt)
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
elif retriever == "google_search":
retrieved_results = google_search(prompt)
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
else:
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "
case _:
prompt = f"[INST] {prompt} [/INST]"
return prompt
def generate_batch(*prompts):
tokenized_inputs = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda")
with torch.no_grad():
responses = tokenizer.batch_decode(
model.generate(
**tokenized_inputs,
max_new_tokens=256,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
stopping_criteria=StoppingCriteriaList([eval_stop_criterion]),
),
skip_special_tokens=True,
)
decoded_prompts = tokenizer.batch_decode(tokenized_inputs.input_ids, skip_special_tokens=True)
return [(prompt, answer) for prompt, answer in zip(decoded_prompts, responses)]
def cleanup(prompt, answer):
start = answer.index(start_template) + len(start_template) if start_template in answer else len(prompt)
start = answer.index(command_template) + len(command_template) if command_template in answer else start
end = answer.index(end_template) if end_template in answer else len(answer)
return (prompt, answer[start:end].strip())
modes = ["Kubectl command", "Kubernetes definition", "Normal"]
modes[response_num] = f"**{modes[response_num]}**"
modes = " / ".join(modes)
if response_num == 2:
prompt = create_generation_prompt(response_num, prompt, False)
original, new = generate_batch(prompt)[0]
prompt, response = cleanup(original, new)
if verbose:
return f"{modes}\n\n" f"# Prompt given to the model:\n" f"{str_to_md(prompt)}\n" f"# Model's answer:\n" f"{str_to_md(response)}\n"
else:
return f"{modes}\n\n" f"# Answer:\n" f"{str_to_md(response)}"
if response_num == 0:
prompt = create_generation_prompt(response_num, prompt, False)
original, new = generate_batch(prompt)[0]
prompt, response = cleanup(original, new)
model_response = new[len(original):].strip()
if verbose:
return (
f"{modes}\n\n"
f"# Prompt given to the model:\n"
f"{str_to_md(prompt)}\n"
f"# Model's answer:\n"
f"{str_to_md(model_response)}\n"
f"# Processed answer:\n"
f"```bash\n{str_to_md(response)}\n```\n"
)
else:
return f"{modes}\n\n" f"# Answer:\n" f"```bash\n{str_to_md(response)}\n```\n"
res_prompt = create_generation_prompt(response_num, prompt, False)
res_semantic_search_prompt = create_generation_prompt(response_num, prompt, "semantic_search")
res_google_search_prompt = create_generation_prompt(response_num, prompt, "google_search")
gen_normal, gen_semantic_search, gen_google_search = generate_batch(
res_prompt, res_semantic_search_prompt, res_google_search_prompt
)
res_prompt, res_normal = cleanup(*gen_normal)
res_semantic_search_prompt, res_semantic_search = cleanup(*gen_semantic_search)
res_google_search_prompt, res_google_search = cleanup(*gen_google_search)
if verbose:
return (
f"{modes}\n\n"
f"# Answer with finetuned model\n"
f"## Prompt given to the model:\n"
f"{str_to_md(res_prompt)}\n\n"
f"## Model's answer:\n"
f"{str_to_md(res_normal)}\n\n"
f"# Answer with RAG\n"
f"## Prompt given to the model:\n"
f"{str_to_md(res_semantic_search_prompt)}\n\n"
f"## Model's answer:\n"
f"{str_to_md(res_semantic_search)}\n\n"
f"# Answer with Google search\n"
f"## Prompt given to the model:\n"
f"{str_to_md(res_google_search_prompt)}\n\n"
f"## Model's answer:\n"
f"{str_to_md(res_google_search)}\n\n"
)
else:
return (
f"{modes}\n\n"
f"# Answer with finetuned model\n\n {str_to_md(res_normal)}\n"
f"# Answer with RAG\n\n {str_to_md(res_semantic_search)}\n"
f"# Answer with Google search\n\n {str_to_md(res_google_search)}"
)
iface = gr.Interface(
fn=text_to_text_generation,
inputs=[
gr.components.Checkbox(label="Verbose"),
gr.components.Text(placeholder="prompt here ...", label="Prompt"),
],
outputs=gr.components.Markdown(label="Answer"),
allow_flagging="never",
)
iface.launch()