KubeWizard / app.py
tmskss's picture
Update semantic search and output format
99a4862
raw
history blame
8.54 kB
import gradio as gr
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import torch
import pinecone
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from sentence_transformers.cross_encoder import CrossEncoder
import numpy as np
from torch import nn
import os
# Set up semantic search
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
def get_embedding(text):
embed_text = sentencetransformer_model.encode(text)
vector_text = embed_text.tolist()
return vector_text
def query_from_pinecone(query, top_k=3):
# get embedding from THE SAME embedder as the documents
query_embedding = get_embedding(query)
return index.query(
vector=query_embedding,
top_k=top_k,
include_metadata=True # gets the metadata (dates, text, etc)
).get('matches')
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
if not results_from_pinecone:
return []
if verbose:
print("Query:", query)
final_results = []
if re_rank:
if verbose:
print('Document ID (Hash)\t\tRetrieval Score\tCE Score\tText')
sentence_combinations = [[query, result_from_pinecone['metadata']['text']] for result_from_pinecone in results_from_pinecone]
# Compute the similarity scores for these combinations
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
# Sort the scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Print the scores
for idx in sim_scores_argsort:
result_from_pinecone = results_from_pinecone[idx]
final_results.append(result_from_pinecone)
if verbose:
print(f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}")
return final_results
if verbose:
print('Document ID (Hash)\t\tRetrieval Score\tText')
for result_from_pinecone in results_from_pinecone:
final_results.append(result_from_pinecone)
if verbose:
print(f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}")
return final_results
def semantic_search(prompt):
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
return '\n\n'.join(res['metadata']['text'].strip() for res in final_results[:3])
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
pinecone_key = PINECONE_API_KEY
INDEX_NAME = 'k8s-semantic-search'
NAMESPACE = 'default'
pinecone.init(api_key=pinecone_key, environment="gcp-starter")
if not INDEX_NAME in pinecone.list_indexes():
pinecone.create_index(
INDEX_NAME, # The name of the index
dimension=768, # The dimensionality of the vectors
metric='cosine', # The similarity metric to use when searching the index
pod_type='starter' # The type of Pinecone pod
)
index = pinecone.Index(INDEX_NAME)
# Set up mistral model
base_model_id = 'mistralai/Mistral-7B-Instruct-v0.1'
lora_model_id = 'ComponentSoft/mistral-kubectl-instruct'
tokenizer = AutoTokenizer.from_pretrained(
lora_model_id,
padding_side="left",
add_eos_token=False,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
use_cache=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()
stop_terms=["</s>", "#End"]
eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
category_terms=["</s>", "\n"]
category_eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in category_terms]
class EvalStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e):]) for e in eos_token_ids_custom)
class CategoryStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e):]) for e in category_eos_token_ids_custom)
start_template = '### Answer:'
command_template = '# Command:'
end_template = '#End'
def text_to_text_generation(prompt):
prompt = prompt.strip()
''
is_kubectl_prompt = (
f"[INST] You are a helpful assistant who classifies prompts into three categories. Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
f"So for instance the following:\n"
f"List all pods in Kubernetes\n"
f"Would get a response:\n"
f"0 [/INST]"
f'text: "{prompt}"'
f'response (0/1/2): '
)
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(model.generate(**model_input, max_new_tokens=8, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.15, stopping_criteria=StoppingCriteriaList([CategoryStopCriterion()]))[0], skip_special_tokens=True)
response = response[len(is_kubectl_prompt):]
print('-----------------------------QUERY START-----------------------------')
print('Prompt: ' + prompt)
print('Classified as: ' + response)
response_num = 2 # Default to generic question
if '0' in response:
response_num = 0
elif '1' in response:
response_num = 1
# Check if general question
if response_num == 0:
prompt = f'[INST] {prompt}\n Lets think step by step. [/INST] {start_template}'
elif response_num == 1:
retrieved_results = semantic_search(prompt)
print('Query:')
print(f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:')
prompt = f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:'
else:
prompt = f'[INST] {prompt} [/INST]'
# Generate output
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(model.generate(**model_input, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.15, stopping_criteria=StoppingCriteriaList([EvalStopCriterion()]))[0], skip_special_tokens=True)
# Get the relevalt parts
start = response.index(start_template) + len(start_template) if start_template in response else len(prompt)
start = response.index(command_template) + len(command_template) if command_template in response else start
end = response.index(end_template) if end_template in response else len(response)
true_response = response[start:end].strip()
print('Returned: ' + true_response)
print('------------------------------QUERY END------------------------------')
return true_response
iface = gr.Interface(fn=text_to_text_generation, inputs="text", outputs="text")
iface.launch()