Spaces:
Sleeping
Sleeping
tamas.kiss
commited on
Commit
β’
36319c9
1
Parent(s):
c86f312
Initialize app
Browse files- README.md +2 -2
- app.py +204 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Kubectl V2
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.4.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Kubectl V2
|
3 |
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.4.1
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
+
from peft import PeftModel
|
5 |
+
import torch
|
6 |
+
import pinecone
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from tqdm import tqdm
|
9 |
+
from sentence_transformers.cross_encoder import CrossEncoder
|
10 |
+
import numpy as np
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
# Set up semantic search
|
14 |
+
PINECONE_API_KEY = $PINECONE_API_KEY
|
15 |
+
|
16 |
+
def get_embedding(text):
|
17 |
+
embed_text = sentencetransformer_model.encode(text)
|
18 |
+
vector_text = embed_text.tolist()
|
19 |
+
|
20 |
+
return vector_text
|
21 |
+
|
22 |
+
def query_from_pinecone(query, top_k=3):
|
23 |
+
# get embedding from THE SAME embedder as the documents
|
24 |
+
query_embedding = get_embedding(query)
|
25 |
+
|
26 |
+
return index.query(
|
27 |
+
vector=query_embedding,
|
28 |
+
top_k=top_k,
|
29 |
+
include_metadata=True # gets the metadata (dates, text, etc)
|
30 |
+
).get('matches')
|
31 |
+
|
32 |
+
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
33 |
+
|
34 |
+
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
|
35 |
+
if not results_from_pinecone:
|
36 |
+
return []
|
37 |
+
|
38 |
+
if verbose:
|
39 |
+
print("Query:", query)
|
40 |
+
|
41 |
+
|
42 |
+
final_results = []
|
43 |
+
|
44 |
+
if re_rank:
|
45 |
+
if verbose:
|
46 |
+
print('Document ID (Hash)\t\tRetrieval Score\tCE Score\tText')
|
47 |
+
|
48 |
+
sentence_combinations = [[query, result_from_pinecone['metadata']['text']] for result_from_pinecone in results_from_pinecone]
|
49 |
+
|
50 |
+
# Compute the similarity scores for these combinations
|
51 |
+
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
|
52 |
+
|
53 |
+
# Sort the scores in decreasing order
|
54 |
+
sim_scores_argsort = reversed(np.argsort(similarity_scores))
|
55 |
+
|
56 |
+
# Print the scores
|
57 |
+
for idx in sim_scores_argsort:
|
58 |
+
result_from_pinecone = results_from_pinecone[idx]
|
59 |
+
final_results.append(result_from_pinecone)
|
60 |
+
if verbose:
|
61 |
+
print(f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}")
|
62 |
+
return final_results
|
63 |
+
|
64 |
+
if verbose:
|
65 |
+
print('Document ID (Hash)\t\tRetrieval Score\tText')
|
66 |
+
for result_from_pinecone in results_from_pinecone:
|
67 |
+
final_results.append(result_from_pinecone)
|
68 |
+
if verbose:
|
69 |
+
print(f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}")
|
70 |
+
|
71 |
+
return final_results
|
72 |
+
|
73 |
+
def semantic_search(prompt):
|
74 |
+
final_results = get_results_from_pinecone(prompt, top_k=3, re_rank=True, verbose=True)
|
75 |
+
|
76 |
+
return 'First result:\n' + final_results[0]['metadata']['text'].replace('\n', ' ') + '\n' + 'Second result:\n' + final_results[1]['metadata']['text'].replace('\n', ' ') + '\n' + 'Third result:\n' + final_results[2]['metadata']['text'].replace('\n', ' ')
|
77 |
+
|
78 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
79 |
+
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
80 |
+
|
81 |
+
pinecone_key = PINECONE_API_KEY
|
82 |
+
|
83 |
+
INDEX_NAME = 'k8s-semantic-search'
|
84 |
+
NAMESPACE = 'default'
|
85 |
+
|
86 |
+
pinecone.init(api_key=pinecone_key, environment="gcp-starter")
|
87 |
+
|
88 |
+
if not INDEX_NAME in pinecone.list_indexes():
|
89 |
+
pinecone.create_index(
|
90 |
+
INDEX_NAME, # The name of the index
|
91 |
+
dimension=768, # The dimensionality of the vectors
|
92 |
+
metric='cosine', # The similarity metric to use when searching the index
|
93 |
+
pod_type='starter' # The type of Pinecone pod
|
94 |
+
)
|
95 |
+
|
96 |
+
index = pinecone.Index(INDEX_NAME)
|
97 |
+
|
98 |
+
# Set up mistral model
|
99 |
+
base_model_id = 'mistralai/Mistral-7B-Instruct-v0.1'
|
100 |
+
lora_model_id = 'ComponentSoft/mistral-kubectl-instruct'
|
101 |
+
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
103 |
+
lora_model_id,
|
104 |
+
padding_side="left",
|
105 |
+
add_eos_token=False,
|
106 |
+
add_bos_token=True,
|
107 |
+
)
|
108 |
+
tokenizer.pad_token = tokenizer.eos_token
|
109 |
+
|
110 |
+
bnb_config = BitsAndBytesConfig(
|
111 |
+
load_in_4bit=True,
|
112 |
+
bnb_4bit_use_double_quant=True,
|
113 |
+
bnb_4bit_quant_type="nf4",
|
114 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
115 |
+
)
|
116 |
+
|
117 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
118 |
+
base_model_id,
|
119 |
+
quantization_config=bnb_config,
|
120 |
+
use_cache=True,
|
121 |
+
trust_remote_code=True,
|
122 |
+
)
|
123 |
+
|
124 |
+
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
125 |
+
model.eval()
|
126 |
+
|
127 |
+
stop_terms=["</s>", "#End"]
|
128 |
+
eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
|
129 |
+
|
130 |
+
category_terms=["</s>", "\n"]
|
131 |
+
category_eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
|
132 |
+
|
133 |
+
|
134 |
+
class EvalStopCriterion(StoppingCriteria):
|
135 |
+
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
|
136 |
+
return any(torch.equal(e, input_ids[0][-len(e):]) for e in eos_token_ids_custom)
|
137 |
+
|
138 |
+
|
139 |
+
class CategoryStopCriterion(StoppingCriteria):
|
140 |
+
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
|
141 |
+
return any(torch.equal(e, input_ids[0][-len(e):]) for e in category_eos_token_ids_custom)
|
142 |
+
|
143 |
+
start_template = '### Answer:'
|
144 |
+
command_template = '# Command:'
|
145 |
+
end_template = '#End'
|
146 |
+
|
147 |
+
def text_to_text_generation(prompt):
|
148 |
+
prompt = prompt.strip()
|
149 |
+
''
|
150 |
+
|
151 |
+
is_kubectl_prompt = (
|
152 |
+
f"[INST] You are a helpful assistant who classifies prompts into three categories. Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
|
153 |
+
f"So for instance the following:\n"
|
154 |
+
f"List all pods in Kubernetes\n"
|
155 |
+
f"Would get a response:\n"
|
156 |
+
f"0 [/INST]"
|
157 |
+
f'text: "{prompt}"'
|
158 |
+
f'response (0/1/2): '
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
|
163 |
+
with torch.no_grad():
|
164 |
+
response = tokenizer.decode(model.generate(**model_input, max_new_tokens=8, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.15, stopping_criteria=StoppingCriteriaList([CategoryStopCriterion()]))[0], skip_special_tokens=True)
|
165 |
+
response = response[len(is_kubectl_prompt):]
|
166 |
+
|
167 |
+
print('-----------------------------QUERY START-----------------------------')
|
168 |
+
print('Prompt: ' + prompt)
|
169 |
+
print('Classified as: ' + response)
|
170 |
+
response_num = 2 # Default to generic question
|
171 |
+
if '0' in response:
|
172 |
+
response_num = 0
|
173 |
+
elif '1' in response:
|
174 |
+
response_num = 1
|
175 |
+
|
176 |
+
|
177 |
+
# Check if general question
|
178 |
+
if response_num == 0:
|
179 |
+
prompt = f'[INST] {prompt}\n Lets think step by step. [/INST] {start_template}'
|
180 |
+
elif response_num == 1:
|
181 |
+
retrieved_results = semantic_search(prompt)
|
182 |
+
print('Query:')
|
183 |
+
print(f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:')
|
184 |
+
prompt = f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:'
|
185 |
+
else:
|
186 |
+
prompt = f'[INST] {prompt}Β [/INST]'
|
187 |
+
|
188 |
+
# Generate output
|
189 |
+
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
|
190 |
+
with torch.no_grad():
|
191 |
+
response = tokenizer.decode(model.generate(**model_input, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.15, stopping_criteria=StoppingCriteriaList([EvalStopCriterion()]))[0], skip_special_tokens=True)
|
192 |
+
|
193 |
+
# Get the relevalt parts
|
194 |
+
start = response.index(start_template) + len(start_template) if start_template in response else len(prompt)
|
195 |
+
start = response.index(command_template) + len(command_template) if command_template in response else start
|
196 |
+
end = response.index(end_template) if end_template in response else len(response)
|
197 |
+
true_response = response[start:end].strip()
|
198 |
+
print('Returned: ' + true_response)
|
199 |
+
print('------------------------------QUERY END------------------------------')
|
200 |
+
|
201 |
+
return true_response
|
202 |
+
|
203 |
+
iface = gr.Interface(fn=semantic_search, inputs="text", outputs="text")
|
204 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
peft
|
3 |
+
bitsandbytes
|
4 |
+
torch
|
5 |
+
scipy
|
6 |
+
pinecone-client
|
7 |
+
sentence_transformers
|
8 |
+
tqdm
|