Spaces:
Sleeping
Sleeping
Update open source model based kubectl
Browse files
app.py
CHANGED
@@ -1,37 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
|
4 |
from peft import PeftModel
|
5 |
-
import torch
|
6 |
-
import pinecone
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
return vector_text
|
22 |
|
23 |
def query_from_pinecone(query, top_k=3):
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
return index.query(
|
28 |
-
vector=query_embedding,
|
29 |
-
top_k=top_k,
|
30 |
-
include_metadata=True # gets the metadata (dates, text, etc)
|
31 |
-
).get('matches')
|
32 |
|
33 |
-
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
34 |
|
|
|
|
|
|
|
|
|
35 |
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
|
36 |
if not results_from_pinecone:
|
37 |
return []
|
@@ -39,14 +101,15 @@ def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
|
39 |
if verbose:
|
40 |
print("Query:", query)
|
41 |
|
42 |
-
|
43 |
final_results = []
|
44 |
|
45 |
if re_rank:
|
46 |
if verbose:
|
47 |
-
print(
|
48 |
|
49 |
-
sentence_combinations = [
|
|
|
|
|
50 |
|
51 |
# Compute the similarity scores for these combinations
|
52 |
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
|
@@ -59,46 +122,33 @@ def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
|
59 |
result_from_pinecone = results_from_pinecone[idx]
|
60 |
final_results.append(result_from_pinecone)
|
61 |
if verbose:
|
62 |
-
print(
|
|
|
|
|
63 |
return final_results
|
64 |
|
65 |
if verbose:
|
66 |
-
print(
|
67 |
for result_from_pinecone in results_from_pinecone:
|
68 |
final_results.append(result_from_pinecone)
|
69 |
if verbose:
|
70 |
-
print(
|
|
|
|
|
71 |
|
72 |
return final_results
|
73 |
|
|
|
74 |
def semantic_search(prompt):
|
75 |
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
|
|
|
|
|
76 |
|
77 |
-
return
|
78 |
|
79 |
-
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
80 |
-
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
INDEX_NAME = 'k8s-semantic-search'
|
85 |
-
NAMESPACE = 'default'
|
86 |
-
|
87 |
-
pinecone.init(api_key=pinecone_key, environment="gcp-starter")
|
88 |
-
|
89 |
-
if not INDEX_NAME in pinecone.list_indexes():
|
90 |
-
pinecone.create_index(
|
91 |
-
INDEX_NAME, # The name of the index
|
92 |
-
dimension=768, # The dimensionality of the vectors
|
93 |
-
metric='cosine', # The similarity metric to use when searching the index
|
94 |
-
pod_type='starter' # The type of Pinecone pod
|
95 |
-
)
|
96 |
-
|
97 |
-
index = pinecone.Index(INDEX_NAME)
|
98 |
-
|
99 |
-
# Set up mistral model
|
100 |
-
base_model_id = 'mistralai/Mistral-7B-Instruct-v0.1'
|
101 |
-
lora_model_id = 'ComponentSoft/mistral-kubectl-instruct'
|
102 |
|
103 |
tokenizer = AutoTokenizer.from_pretrained(
|
104 |
lora_model_id,
|
@@ -109,10 +159,7 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
109 |
tokenizer.pad_token = tokenizer.eos_token
|
110 |
|
111 |
bnb_config = BitsAndBytesConfig(
|
112 |
-
load_in_4bit=True,
|
113 |
-
bnb_4bit_use_double_quant=True,
|
114 |
-
bnb_4bit_quant_type="nf4",
|
115 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
116 |
)
|
117 |
|
118 |
base_model = AutoModelForCausalLM.from_pretrained(
|
@@ -125,81 +172,139 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
125 |
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
126 |
model.eval()
|
127 |
|
128 |
-
stop_terms=["</s>", "#End"]
|
129 |
-
eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
133 |
|
|
|
134 |
|
135 |
-
class EvalStopCriterion(StoppingCriteria):
|
136 |
-
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
|
137 |
-
return any(torch.equal(e, input_ids[0][-len(e):]) for e in eos_token_ids_custom)
|
138 |
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
start_template = '### Answer:'
|
145 |
-
command_template = '# Command:'
|
146 |
-
end_template = '#End'
|
147 |
|
148 |
-
def text_to_text_generation(prompt):
|
149 |
prompt = prompt.strip()
|
150 |
-
''
|
151 |
|
152 |
is_kubectl_prompt = (
|
153 |
-
f"
|
154 |
f"So for instance the following:\n"
|
155 |
-
f"List all pods in Kubernetes\n
|
156 |
f"Would get a response:\n"
|
157 |
-
f"0 [/INST]"
|
158 |
f'text: "{prompt}"'
|
159 |
-
f
|
160 |
)
|
161 |
|
162 |
-
|
163 |
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
|
164 |
with torch.no_grad():
|
165 |
-
response = tokenizer.decode(
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
# Get the relevalt parts
|
195 |
-
start = response.index(start_template) + len(start_template) if start_template in response else len(prompt)
|
196 |
-
start = response.index(command_template) + len(command_template) if command_template in response else start
|
197 |
-
end = response.index(end_template) if end_template in response else len(response)
|
198 |
-
true_response = response[start:end].strip()
|
199 |
-
print('Returned: ' + true_response)
|
200 |
-
print('------------------------------QUERY END------------------------------')
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
iface
|
205 |
-
iface.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import time
|
3 |
+
import pinecone
|
4 |
+
import pickle
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import hashlib
|
8 |
import gradio as gr
|
9 |
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
|
10 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
11 |
+
from torch import nn
|
12 |
+
from sentence_transformers.cross_encoder import CrossEncoder
|
13 |
from peft import PeftModel
|
|
|
|
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
+
from bs4 import BeautifulSoup
|
16 |
+
import requests
|
17 |
+
|
18 |
+
headers = {
|
19 |
+
"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
|
20 |
+
"Accept":"text/html,application/xhtml+xml,application/xml; q=0.9,image/webp,*/*;q=0.8",
|
21 |
+
'Cookie':'CONSENT=YES+cb.20210418-17-p0.it+FX+917; '
|
22 |
+
}
|
23 |
+
|
24 |
+
def google_search(text):
|
25 |
+
print(f"Google search on: {text}")
|
26 |
+
try:
|
27 |
+
site = requests.get(f'https://www.google.com/search?hl=en&q={text}', headers=headers)
|
28 |
+
main = BeautifulSoup(site.text, features="html.parser").select_one('#main').select('.VwiC3b.lyLwlc.yDYNvb.W8l4ac')
|
29 |
+
res = '\n\n'.join([m.get_text() for m in main])
|
30 |
+
except Exception as ex:
|
31 |
+
print(f"Error: {ex}")
|
32 |
+
res = ""
|
33 |
+
|
34 |
+
print(f"The result of the google search is: {res}")
|
35 |
+
|
36 |
+
return res
|
37 |
+
|
38 |
+
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
39 |
+
|
40 |
+
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
41 |
+
pinecone.init(api_key=PINECONE_API_KEY, environment="gcp-starter")
|
42 |
+
|
43 |
+
|
44 |
+
CACHE_DIR = "./.cache"
|
45 |
+
INDEX_NAME = "k8s-semantic-search"
|
46 |
+
|
47 |
+
if not os.path.exists(CACHE_DIR):
|
48 |
+
os.makedirs(CACHE_DIR)
|
49 |
+
|
50 |
+
|
51 |
+
def cached(func):
|
52 |
+
def wrapper(*args, **kwargs):
|
53 |
+
SEP = "$|$"
|
54 |
+
cache_token = (
|
55 |
+
f"{func.__name__}{SEP}"
|
56 |
+
f"{SEP.join(str(arg) for arg in args)}{SEP}"
|
57 |
+
f"{SEP.join( str(key) + SEP * 2 + str(val) for key, val in kwargs.items())}"
|
58 |
+
)
|
59 |
+
|
60 |
+
hex_hash = hashlib.sha256(cache_token.encode()).hexdigest()
|
61 |
+
cache_filename: str = os.path.join(CACHE_DIR, f"{hex_hash}")
|
62 |
|
63 |
+
if os.path.exists(cache_filename):
|
64 |
+
with open(cache_filename, "rb") as cache_file:
|
65 |
+
return pickle.load(cache_file)
|
66 |
|
67 |
+
result = func(*args, **kwargs)
|
68 |
+
with open(cache_filename, "wb") as cache_file:
|
69 |
+
pickle.dump(result, cache_file)
|
70 |
+
|
71 |
+
return result
|
72 |
+
|
73 |
+
return wrapper
|
74 |
+
|
75 |
+
|
76 |
+
@cached
|
77 |
+
def create_embedding(text: str):
|
78 |
+
embed_text = sentencetransformer_model.encode(text)
|
79 |
+
|
80 |
+
return embed_text.tolist()
|
81 |
+
|
82 |
+
index = pinecone.Index(INDEX_NAME)
|
83 |
|
|
|
84 |
|
85 |
def query_from_pinecone(query, top_k=3):
|
86 |
+
embedding = create_embedding(query)
|
87 |
+
if not embedding:
|
88 |
+
return None
|
89 |
|
90 |
+
return index.query(vector=embedding, top_k=top_k, include_metadata=True).get("matches") # gets the metadata (text)
|
|
|
|
|
|
|
|
|
91 |
|
|
|
92 |
|
93 |
+
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
94 |
+
|
95 |
+
|
96 |
+
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
97 |
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
|
98 |
if not results_from_pinecone:
|
99 |
return []
|
|
|
101 |
if verbose:
|
102 |
print("Query:", query)
|
103 |
|
|
|
104 |
final_results = []
|
105 |
|
106 |
if re_rank:
|
107 |
if verbose:
|
108 |
+
print("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText")
|
109 |
|
110 |
+
sentence_combinations = [
|
111 |
+
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
|
112 |
+
]
|
113 |
|
114 |
# Compute the similarity scores for these combinations
|
115 |
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
|
|
|
122 |
result_from_pinecone = results_from_pinecone[idx]
|
123 |
final_results.append(result_from_pinecone)
|
124 |
if verbose:
|
125 |
+
print(
|
126 |
+
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
|
127 |
+
)
|
128 |
return final_results
|
129 |
|
130 |
if verbose:
|
131 |
+
print("Document ID (Hash)\t\tRetrieval Score\tText")
|
132 |
for result_from_pinecone in results_from_pinecone:
|
133 |
final_results.append(result_from_pinecone)
|
134 |
if verbose:
|
135 |
+
print(
|
136 |
+
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
|
137 |
+
)
|
138 |
|
139 |
return final_results
|
140 |
|
141 |
+
|
142 |
def semantic_search(prompt):
|
143 |
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
|
144 |
+
if not final_results:
|
145 |
+
return ""
|
146 |
|
147 |
+
return "\n\n".join(res["metadata"]["text"].strip() for res in final_results[:3])
|
148 |
|
|
|
|
|
149 |
|
150 |
+
base_model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
151 |
+
lora_model_id = "ComponentSoft/mistral-kubectl-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
tokenizer = AutoTokenizer.from_pretrained(
|
154 |
lora_model_id,
|
|
|
159 |
tokenizer.pad_token = tokenizer.eos_token
|
160 |
|
161 |
bnb_config = BitsAndBytesConfig(
|
162 |
+
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
|
|
|
|
|
|
163 |
)
|
164 |
|
165 |
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
172 |
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
173 |
model.eval()
|
174 |
|
|
|
|
|
175 |
|
176 |
+
def create_stop_criterion(*args):
|
177 |
+
term_tokens = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in args]
|
178 |
+
|
179 |
+
class CustomStopCriterion(StoppingCriteria):
|
180 |
+
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
|
181 |
+
return any(torch.equal(e, input_ids[0][-len(e) :]) for e in term_tokens)
|
182 |
|
183 |
+
return CustomStopCriterion()
|
184 |
|
|
|
|
|
|
|
185 |
|
186 |
+
eval_stop_criterion = create_stop_criterion("</s>", "#End")
|
187 |
+
category_stop_criterion = create_stop_criterion("</s>", "\n")
|
188 |
|
189 |
+
start_template = "### Answer:"
|
190 |
+
command_template = "# Command:"
|
191 |
+
end_template = "#End"
|
192 |
|
|
|
|
|
|
|
193 |
|
194 |
+
def text_to_text_generation(verbose, prompt):
|
195 |
prompt = prompt.strip()
|
|
|
196 |
|
197 |
is_kubectl_prompt = (
|
198 |
+
f"You are a helpful assistant who classifies prompts into three categories. [INST] Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
|
199 |
f"So for instance the following:\n"
|
200 |
+
f'text: "List all pods in Kubernetes"\n'
|
201 |
f"Would get a response:\n"
|
202 |
+
f"response (0/1/2): 0 [/INST] \n"
|
203 |
f'text: "{prompt}"'
|
204 |
+
f"response (0/1/2): "
|
205 |
)
|
206 |
|
|
|
207 |
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
|
208 |
with torch.no_grad():
|
209 |
+
response = tokenizer.decode(
|
210 |
+
model.generate(
|
211 |
+
**model_input,
|
212 |
+
max_new_tokens=8,
|
213 |
+
pad_token_id=tokenizer.eos_token_id,
|
214 |
+
repetition_penalty=1.15,
|
215 |
+
stopping_criteria=StoppingCriteriaList([category_stop_criterion]),
|
216 |
+
)[0],
|
217 |
+
skip_special_tokens=True,
|
218 |
+
)
|
219 |
+
response = response[len(is_kubectl_prompt) :]
|
220 |
+
|
221 |
+
print(f'{" Query Start ":-^40}')
|
222 |
+
print("Classified as: " + response)
|
223 |
+
|
224 |
+
response_num = 0 if "0" in response else (1 if "1" in response else 2)
|
225 |
+
|
226 |
+
def generate(response_num, prompt, retriever, verbose):
|
227 |
+
match response_num:
|
228 |
+
case 0:
|
229 |
+
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"
|
230 |
+
|
231 |
+
case 1:
|
232 |
+
if retriever == "semantic_search":
|
233 |
+
retrieved_results = semantic_search(prompt)
|
234 |
+
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
235 |
+
elif retriever == "google_search":
|
236 |
+
retrieved_results = google_search(prompt)
|
237 |
+
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
238 |
+
else:
|
239 |
+
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "
|
240 |
+
|
241 |
+
case _:
|
242 |
+
prompt = f"[INST] {prompt} [/INST]"
|
243 |
+
|
244 |
+
print("Query:")
|
245 |
+
print(prompt)
|
246 |
+
|
247 |
+
# Generate output
|
248 |
+
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
|
249 |
+
with torch.no_grad():
|
250 |
+
response = tokenizer.decode(
|
251 |
+
model.generate(
|
252 |
+
**model_input,
|
253 |
+
max_new_tokens=256,
|
254 |
+
pad_token_id=tokenizer.eos_token_id,
|
255 |
+
repetition_penalty=1.15,
|
256 |
+
stopping_criteria=StoppingCriteriaList([eval_stop_criterion]),
|
257 |
+
)[0],
|
258 |
+
skip_special_tokens=True,
|
259 |
+
)
|
260 |
+
|
261 |
+
decoded_prompt = tokenizer.decode(tokenizer(prompt).input_ids, skip_special_tokens=True)
|
262 |
+
|
263 |
+
start = (
|
264 |
+
response.index(start_template) + len(start_template) if start_template in response else len(decoded_prompt)
|
265 |
+
)
|
266 |
+
start = response.index(command_template) + len(command_template) if command_template in response else start
|
267 |
+
end = response.index(end_template) if end_template in response else len(response)
|
268 |
+
|
269 |
+
return response if verbose else response[start:end].strip()
|
270 |
+
|
271 |
+
true_response = generate(response_num, prompt, False, verbose)
|
272 |
+
true_response_semantic_search = generate(response_num, prompt, "semantic_search", verbose)
|
273 |
+
true_response_google_search = generate(response_num, prompt, "google_search", verbose)
|
274 |
+
|
275 |
+
|
276 |
+
print("Returned: " + true_response)
|
277 |
+
print(f'{" QUERY END ":-^40}')
|
278 |
+
|
279 |
+
match response_num:
|
280 |
+
case 0:
|
281 |
+
mode = "Kubectl"
|
282 |
+
case 1:
|
283 |
+
mode = "Kubernetes"
|
284 |
+
case _:
|
285 |
+
mode = "Normal"
|
286 |
+
|
287 |
+
return (
|
288 |
+
f"*Mode*: {mode}",
|
289 |
+
f"# Answer\n\n {true_response}",
|
290 |
+
f"# Answer with RAG\n\n {true_response_semantic_search}",
|
291 |
+
f"# Answer with Google search\n\n {true_response_google_search}"
|
292 |
+
)
|
293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
iface = gr.Interface(
|
296 |
+
fn=text_to_text_generation,
|
297 |
+
inputs=[
|
298 |
+
gr.components.Checkbox(label="Verbose"),
|
299 |
+
gr.components.Text(placeholder="prompt here ...", label="Prompt"),
|
300 |
+
],
|
301 |
+
outputs=[
|
302 |
+
gr.components.Markdown(label="Mode"),
|
303 |
+
gr.components.Markdown(label="Answer Without Retriever"),
|
304 |
+
gr.components.Markdown(label="Answer With Retriever"),
|
305 |
+
gr.components.Markdown(label="Answer With Google search"),
|
306 |
+
],
|
307 |
+
allow_flagging="never",
|
308 |
+
)
|
309 |
|
310 |
+
iface.launch()
|
|