Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
import spaces | |
import uuid | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_video | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
# Constants | |
bases = { | |
"Cartoon": "frankjoshua/toonyou_beta6", | |
"Realistic": "emilianJR/epiCRealism", | |
"3d": "Lykon/DreamShaper", | |
"Anime": "Yntec/mistoonAnime2" | |
} | |
step_loaded = None | |
base_loaded = "Realistic" | |
motion_loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if not torch.cuda.is_available(): | |
raise NotImplementedError("No GPU detected!") | |
device = "cuda" | |
dtype = torch.float16 | |
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
# Safety checkers | |
from transformers import CLIPFeatureExtractor | |
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") # change for open-source model | |
# Function: we are using Gradio server to queue calls. However this is open for different architectures | |
def generate_image(prompt, base, motion, step, progress=gr.Progress()): | |
global step_loaded | |
global base_loaded | |
global motion_loaded | |
print(prompt, base, step) | |
if step_loaded != step: | |
repo = "ByteDance/AnimateDiff-Lightning" # we can change to other Diffusion models... | |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" #...but you must change the implementation at this point to match with the checkpoint | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
step_loaded = step | |
if base_loaded != base: | |
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) | |
base_loaded = base | |
if motion_loaded != motion: | |
pipe.unload_lora_weights() | |
if motion != "": | |
pipe.load_lora_weights(motion, adapter_name="motion") | |
pipe.set_adapters(["motion"], [0.7]) | |
motion_loaded = motion | |
progress((0, step)) | |
def progress_callback(i, t, z): | |
progress((i+1, step)) | |
output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1) #providing visibility to progress. Useful if using gradio interface | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
# Gradio Interface | |
with gr.Blocks(css="style.css", theme='sudeepshouche/minimalist') as syntvideo: | |
gr.HTML( | |
"<h1><center>MAGIC Demo: synthetic video generation application</center></h1>" + | |
"<p><center><span style='color: red;'>Change the steps from 4 to 8 to get better results.</center></p>" + | |
"<p><center>Write prompts in style as given in the examples below:</center></p>" + | |
"<p><center>Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)</center></p>" + | |
"<p><center>Focus: Trees In forest (Animate: Lion running)</center></p>" + | |
"<p><center>Focus: Kids Playing (Season: Winter)</center></p>" + | |
"<p><center>Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)</center></p>" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label='Prompt' | |
) | |
with gr.Row(): | |
select_base = gr.Dropdown( | |
label='Base model', | |
choices=[ | |
"Cartoon", | |
"Realistic", | |
"3d", | |
"Anime", | |
], | |
value=base_loaded, | |
interactive=True | |
) | |
select_motion = gr.Dropdown( | |
label='Motion', | |
choices=[ | |
("Default", ""), | |
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
], | |
value="guoyww/animatediff-motion-lora-zoom-in", | |
interactive=True | |
) | |
select_step = gr.Dropdown( | |
label='Inference steps', | |
choices=[ | |
('1-Step', 1), | |
('2-Step', 2), | |
('4-Step', 4), | |
('8-Step', 8), | |
], | |
value=4, | |
interactive=True | |
) | |
submit = gr.Button( | |
scale=1, | |
variant='primary' | |
) | |
video = gr.Video( | |
label='Generate Synthetic Video', | |
autoplay=True, | |
height=512, | |
width=512, | |
elem_id="video_output" | |
) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, select_base, select_motion, select_step], | |
outputs=video, | |
) | |
submit.click( | |
fn=generate_image, | |
inputs=[prompt, select_base, select_motion, select_step], | |
outputs=video, | |
) | |
syntvideo.queue().launch() |