File size: 7,775 Bytes
016174f
d835ff5
 
0d32d53
d835ff5
 
 
9f15b87
d835ff5
 
 
 
 
 
 
 
 
9f15b87
 
 
 
61aa908
d835ff5
 
d87df45
d835ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
016174f
0d32d53
d835ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
016174f
0eecf08
016174f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
from dotenv import load_dotenv
import asyncio
import gradio as gr
import numpy as np
import time
import json
import os
import tempfile
import requests
import logging

from aiohttp import ClientSession
from langchain.text_splitter import RecursiveCharacterTextSplitter
from datasets import Dataset, load_dataset
from tqdm import tqdm
from tqdm.asyncio import tqdm_asyncio

load_dotenv()

USERNAME = os.getenv("USERNAME")
PWD = os.getenv("USER_PWD")
HF_TOKEN = os.getenv("HF_TOKEN")
SEMAPHORE_BOUND = os.getenv("SEMAPHORE_BOUND", "5")


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class Chunker:
    def __init__(self, strategy, split_seq=".", chunk_len=512):
        self.split_seq = split_seq
        self.chunk_len = chunk_len
        if strategy == "recursive":
            # https://huggingface.co/spaces/m-ric/chunk_visualizer
            self.split = RecursiveCharacterTextSplitter(
                chunk_size=chunk_len,
                separators=[split_seq]
            ).split_text
        if strategy == "sequence":
            self.split = self.seq_splitter
        if strategy == "constant":
            self.split = self.const_splitter

    def seq_splitter(self, text):
        return text.split(self.split_seq)

    def const_splitter(self, text):
        return [
            text[i * self.chunk_len:(i + 1) * self.chunk_len]
            for i in range(int(np.ceil(len(text) / self.chunk_len)))
        ]


def generator(input_ds, input_text_col, chunker):
    for i in tqdm(range(len(input_ds))):
        chunks = chunker.split(input_ds[i][input_text_col])
        for chunk in chunks:
            if chunk:
                yield {input_text_col: chunk}


async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
    async with semaphore:
        payload = {
            "inputs": sentence,
            "truncate": True
        }

        async with ClientSession(
                headers={
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {HF_TOKEN}"
                }
        ) as session:
            async with session.post(tei_url, json=payload) as resp:
                if resp.status != 200:
                    raise RuntimeError(await resp.text())
                result = await resp.json()

                tmp_file.write(
                    json.dumps({"vector": result[0], embed_in_text_col: sentence}) + "\n"
                )


async def embed_ds(input_ds, tei_url, embed_in_text_col, temp_file):
    semaphore = asyncio.BoundedSemaphore(int(SEMAPHORE_BOUND))
    jobs = [
        asyncio.create_task(embed_sent(row[embed_in_text_col], embed_in_text_col, semaphore, tei_url, temp_file))
        for row in input_ds if row[embed_in_text_col].strip()
    ]
    logger.info(f"num chunks to embed: {len(jobs)}")

    tic = time.time()
    await tqdm_asyncio.gather(*jobs)
    logger.info(f"embed time: {time.time() - tic}")


def wake_up_endpoint(url):
    logger.info("Starting up TEI endpoint")
    n_loop = 0
    while requests.get(
        url=url,
        headers={"Authorization": f"Bearer {HF_TOKEN}"}
    ).status_code != 200:
        time.sleep(2)
        n_loop += 1
        if n_loop > 40:
            raise gr.Error("TEI endpoint is unavailable")
    logger.info("TEI endpoint is up")


def chunk_embed(input_ds, input_splits, input_text_col, chunk_out_ds,
                strategy, split_seq, chunk_len, embed_out_ds, tei_url, private):
    gr.Info("Started chunking")
    try:
        input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
        input_ds = load_dataset(input_ds, split="+".join(input_splits), token=HF_TOKEN)
        chunker = Chunker(strategy, split_seq, chunk_len)
    except Exception as e:
        raise gr.Error(str(e))

    gen_kwargs = {
        "input_ds": input_ds,
        "input_text_col": input_text_col,
        "chunker": chunker
    }
    chunked_ds = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
    chunked_ds.push_to_hub(
        chunk_out_ds,
        private=private,
        token=HF_TOKEN
    )

    gr.Info("Done chunking")
    logger.info("Done chunking")

    try:
        wake_up_endpoint(tei_url)
        with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
            asyncio.run(embed_ds(chunked_ds, tei_url, input_text_col, temp_file))

            embedded_ds = Dataset.from_json(temp_file.name)
            embedded_ds.push_to_hub(
                embed_out_ds,
                private=private,
                token=HF_TOKEN
            )
    except Exception as e:
        raise gr.Error(str(e))

    gr.Info("Done embedding")
    logger.info("Done embedding")


def change_dropdown(choice):
    if choice == "recursive":
        return [
            gr.Textbox(visible=True),
            gr.Textbox(visible=True)
        ]
    elif choice == "sequence":
        return [
            gr.Textbox(visible=True),
            gr.Textbox(visible=False)
        ]
    else:
        return [
            gr.Textbox(visible=False),
            gr.Textbox(visible=True)
        ]


def main(args):
    demo= gr.Blocks(theme='sudeepshouche/minimalist'):
        gr.Markdown(
            """
            ## Chunk and embed
            """
        )
        input_ds = gr.Textbox(lines=1, label="Input dataset name")
        with gr.Row():
            input_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
            input_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
        chunk_out_ds = gr.Textbox(lines=1, label="Chunked dataset name")
        with gr.Row():
            dropdown = gr.Dropdown(
                ["recursive", "sequence", "constant"], label="Chunking strategy",
                info="'recursive' uses a Langchain recursive tokenizer, 'sequence' splits texts by a chosen sequence, "
                     "'constant' makes chunks of the constant size",
                scale=2
            )
            split_seq = gr.Textbox(
                lines=1,
                interactive=True,
                visible=False,
                label="Sequence",
                info="A text sequence to split on",
                placeholder="\n\n"
            )
            chunk_len = gr.Textbox(
                lines=1,
                interactive=True,
                visible=False,
                label="Length",
                info="The length of chunks to split into in characters",
                placeholder="512"
            )
            dropdown.change(fn=change_dropdown, inputs=dropdown, outputs=[split_seq, chunk_len])
        embed_out_ds = gr.Textbox(lines=1, label="Embedded dataset name")
        private = gr.Checkbox(label="Make output datasets private")
        tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
        with gr.Row():
            clear = gr.ClearButton(
                components=[input_ds, input_splits, input_text_col, chunk_out_ds,
                    dropdown, split_seq, chunk_len, embed_out_ds, tei_url, private]
            )
            embed_btn = gr.Button("Submit")
            embed_btn.click(
                fn=chunk_embed,
                inputs=[input_ds, input_splits, input_text_col, chunk_out_ds,
                    dropdown, split_seq, chunk_len, embed_out_ds, tei_url, private]
            )

    demo.queue()
    demo.launch(auth=(USERNAME, PWD), server_name="0.0.0.0", server_port=args.port)
######
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="A MAGIC example by ConceptaTech")
    parser.add_argument("--port", type=int, default=7860, help="Port to expose Gradio app")
    
    args = parser.parse_args()    
    main(args)