Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import openai
|
5 |
+
import base64
|
6 |
+
import pytz
|
7 |
+
import uuid
|
8 |
+
from threading import Thread
|
9 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
10 |
+
from datetime import datetime
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
from moviepy.editor import ImageSequenceClip
|
14 |
+
from gradio_client import Client, file
|
15 |
+
# https://16d3-2a0d-6fc2-61b1-8500-5d45-b385-9a4d-5522.ngrok-free.app/video_feed
|
16 |
+
# rtsp://admin:Conntour1!@eu.loclx.io:5678/Streaming/Channels/101
|
17 |
+
|
18 |
+
import os
|
19 |
+
|
20 |
+
api_key = os.getenv("OPEN_AI_KEY")
|
21 |
+
user_name = os.getenv("USER_NAME")
|
22 |
+
password = os.getenv("PASSWORD")
|
23 |
+
|
24 |
+
LENGTH = 5
|
25 |
+
WEBCAM = 0
|
26 |
+
|
27 |
+
MARKDOWN = """
|
28 |
+
# Conntour
|
29 |
+
"""
|
30 |
+
AVATARS = (
|
31 |
+
"https://assets-global.website-files.com/63d6dca820934a77a340f31e/63dfb7a21b4c08282d524010_pyramid.png",
|
32 |
+
"https://media.roboflow.com/spaces/openai-white-logomark.png"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Set your OpenAI API key
|
36 |
+
openai.api_key = api_key
|
37 |
+
MODEL="gpt-4o"
|
38 |
+
client = openai.OpenAI(api_key=api_key)
|
39 |
+
|
40 |
+
# Global variable to stop the video capture loop
|
41 |
+
stop_capture = False
|
42 |
+
alerts_mode = True
|
43 |
+
|
44 |
+
|
45 |
+
def encode_to_video(frames, fps):
|
46 |
+
os.makedirs('videos', exist_ok=True)
|
47 |
+
video_clip_path = f"videos/{uuid.uuid4()}.mp4"
|
48 |
+
|
49 |
+
# Create a video clip from the frames using moviepy
|
50 |
+
clip = ImageSequenceClip([frame[:, :, ::-1] for frame in frames], fps=fps) # Convert from BGR to RGB
|
51 |
+
clip.write_videofile(video_clip_path, codec="libx264")
|
52 |
+
|
53 |
+
# Convert the video file to base64
|
54 |
+
with open(video_clip_path, "rb") as video_file:
|
55 |
+
video_data = base64.b64encode(video_file.read()).decode('utf-8')
|
56 |
+
|
57 |
+
return video_clip_path
|
58 |
+
|
59 |
+
# Function to process video frames using GPT-4 API
|
60 |
+
def process_frames(frames, frames_to_skip = 1):
|
61 |
+
os.makedirs('saved_frames', exist_ok=True)
|
62 |
+
curr_frame=0
|
63 |
+
base64Frames = []
|
64 |
+
while curr_frame < len(frames) - 1:
|
65 |
+
_, buffer = cv2.imencode(".jpg", frames[curr_frame])
|
66 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
67 |
+
curr_frame += frames_to_skip
|
68 |
+
return base64Frames
|
69 |
+
|
70 |
+
# Function to check condition using GPT-4 API
|
71 |
+
def check_condition(prompt, base64Frames):
|
72 |
+
start_time = time.time()
|
73 |
+
print('checking condition for frames:', len(base64Frames))
|
74 |
+
|
75 |
+
# Save frames as images
|
76 |
+
|
77 |
+
|
78 |
+
messages = [
|
79 |
+
{"role": "system", "content": """You are analyzing video frames to check if the user's condition is met.
|
80 |
+
Please respond with a JSON object in the following format:
|
81 |
+
{"condition_met": true/false, "details": "optional details or summary"}"""},
|
82 |
+
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
|
83 |
+
]
|
84 |
+
response = client.chat.completions.create(
|
85 |
+
model="gpt-4o",
|
86 |
+
messages=messages,
|
87 |
+
temperature=0,
|
88 |
+
response_format={ "type": "json_object" }
|
89 |
+
)
|
90 |
+
|
91 |
+
end_time = time.time()
|
92 |
+
processing_time = end_time - start_time
|
93 |
+
frames_count = len(base64Frames)
|
94 |
+
api_response = response.choices[0].message.content
|
95 |
+
try:
|
96 |
+
jsonNew = json.loads(api_response)
|
97 |
+
print('result', response.usage.total_tokens, jsonNew)
|
98 |
+
return frames_count, processing_time, jsonNew
|
99 |
+
except:
|
100 |
+
print('result', response.usage.total_tokens, api_response)
|
101 |
+
return frames_count, processing_time, api_response
|
102 |
+
|
103 |
+
|
104 |
+
# Function to process video clip and update the chatbot
|
105 |
+
def process_clip(prompt, frames, chatbot):
|
106 |
+
# Print current time in Israel
|
107 |
+
israel_tz = pytz.timezone('Asia/Jerusalem')
|
108 |
+
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
|
109 |
+
print("[Start]:", start_time, len(frames))
|
110 |
+
|
111 |
+
# Encode frames into a video clip
|
112 |
+
fps = int(len(frames) / LENGTH)
|
113 |
+
base64Frames = process_frames(frames, fps)
|
114 |
+
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
|
115 |
+
|
116 |
+
if api_response["condition_met"] == True:
|
117 |
+
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
|
118 |
+
video_clip_path = encode_to_video(frames, fps)
|
119 |
+
chatbot.append(((video_clip_path,), None))
|
120 |
+
result = f"Time: {start_time}\n"
|
121 |
+
chatbot.append((result, None))
|
122 |
+
|
123 |
+
frame_paths = []
|
124 |
+
for i, base64_frame in enumerate(base64Frames):
|
125 |
+
frame_data = base64.b64decode(base64_frame)
|
126 |
+
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
|
127 |
+
with open(frame_path, "wb") as f:
|
128 |
+
f.write(frame_data)
|
129 |
+
frame_paths.append(frame_path)
|
130 |
+
|
131 |
+
def process_clip_from_file(prompt, frames, chatbot, fps):
|
132 |
+
global stop_capture
|
133 |
+
if not stop_capture:
|
134 |
+
israel_tz = pytz.timezone('Asia/Jerusalem')
|
135 |
+
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
|
136 |
+
print("[Start]:", start_time, len(frames))
|
137 |
+
|
138 |
+
fps = 20
|
139 |
+
frames_to_skip = int(fps * 1)
|
140 |
+
base64Frames = process_frames(frames, frames_to_skip)
|
141 |
+
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
|
142 |
+
|
143 |
+
result = None
|
144 |
+
if api_response and api_response.get("condition_met", False):
|
145 |
+
video_clip_path = encode_to_video(frames, fps)
|
146 |
+
chatbot.append(((video_clip_path,), None))
|
147 |
+
chatbot.append((f"Time: {start_time}\nDetails: {api_response.get('details', '')}", None))
|
148 |
+
|
149 |
+
return chatbot
|
150 |
+
|
151 |
+
# Function to capture video frames
|
152 |
+
def analyze_stream(prompt, stream, chatbot):
|
153 |
+
global stop_capture
|
154 |
+
stop_capture = False
|
155 |
+
|
156 |
+
|
157 |
+
cap = cv2.VideoCapture(stream or WEBCAM)
|
158 |
+
|
159 |
+
frames = []
|
160 |
+
start_time = time.time()
|
161 |
+
while not stop_capture:
|
162 |
+
ret, frame = cap.read()
|
163 |
+
if not ret:
|
164 |
+
break
|
165 |
+
frames.append(frame)
|
166 |
+
|
167 |
+
# Sample the frames every 5 seconds
|
168 |
+
if time.time() - start_time >= LENGTH:
|
169 |
+
# Start a new thread for processing the video clip
|
170 |
+
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot,)).start()
|
171 |
+
frames = []
|
172 |
+
start_time = time.time()
|
173 |
+
yield chatbot
|
174 |
+
|
175 |
+
cap.release()
|
176 |
+
return chatbot
|
177 |
+
|
178 |
+
def analyze_video_file(prompt, video_path, chatbot):
|
179 |
+
global stop_capture
|
180 |
+
stop_capture = False # Reset the stop flag when analysis starts
|
181 |
+
|
182 |
+
cap = cv2.VideoCapture(video_path)
|
183 |
+
|
184 |
+
# Get video properties
|
185 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second
|
186 |
+
frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk
|
187 |
+
|
188 |
+
frames = []
|
189 |
+
|
190 |
+
# Create a thread pool for concurrent processing
|
191 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
192 |
+
futures = []
|
193 |
+
|
194 |
+
while not stop_capture:
|
195 |
+
ret, frame = cap.read()
|
196 |
+
if not ret:
|
197 |
+
break
|
198 |
+
frames.append(frame)
|
199 |
+
|
200 |
+
# Split the video into chunks of frames corresponding to 5 seconds
|
201 |
+
if len(frames) >= frames_per_chunk:
|
202 |
+
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps))
|
203 |
+
frames = []
|
204 |
+
|
205 |
+
# If any remaining frames that are less than 5 seconds, process them as a final chunk
|
206 |
+
if len(frames) > 0:
|
207 |
+
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps))
|
208 |
+
|
209 |
+
cap.release()
|
210 |
+
# Yield results as soon as each thread completes
|
211 |
+
for future in as_completed(futures):
|
212 |
+
result = future.result()
|
213 |
+
yield result
|
214 |
+
return chatbot
|
215 |
+
|
216 |
+
|
217 |
+
# Function to stop video capture
|
218 |
+
def stop_capture_func():
|
219 |
+
global stop_capture
|
220 |
+
stop_capture = True
|
221 |
+
|
222 |
+
# Gradio interface
|
223 |
+
with gr.Blocks(title="Conntour", fill_height=True) as demo:
|
224 |
+
with gr.Tab("Analyze"):
|
225 |
+
with gr.Row():
|
226 |
+
video = gr.Video(label="Video Source")
|
227 |
+
with gr.Column():
|
228 |
+
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS)
|
229 |
+
prompt = gr.Textbox(label="Enter your prompt alert")
|
230 |
+
start_btn = gr.Button("Start")
|
231 |
+
stop_btn = gr.Button("Stop")
|
232 |
+
start_btn.click(analyze_video_file, inputs=[prompt, video, chatbot], outputs=[chatbot], queue=True)
|
233 |
+
stop_btn.click(stop_capture_func)
|
234 |
+
with gr.Tab("Alerts"):
|
235 |
+
with gr.Row():
|
236 |
+
stream = gr.Textbox(label="Video Source", value="https://streamapi2.eu.loclx.io/video_feed/101 OR rtsp://admin:Conntour1!@eu.loclx.io:5678/Streaming/Channels/101")
|
237 |
+
with gr.Column():
|
238 |
+
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS)
|
239 |
+
prompt = gr.Textbox(label="Enter your prompt alert")
|
240 |
+
start_btn = gr.Button("Start")
|
241 |
+
stop_btn = gr.Button("Stop")
|
242 |
+
start_btn.click(analyze_stream, inputs=[prompt, stream, chatbot], outputs=[chatbot], queue=True)
|
243 |
+
stop_btn.click(stop_capture_func)
|
244 |
+
|
245 |
+
demo.launch(favicon_path='favicon.ico', auth=(user_name, password))
|