Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import chromadb | |
from chromadb.config import Settings | |
from chromadb import PersistentClient | |
# Initialize the inference client with your model (ensure you have access to the model) | |
inference_client = InferenceClient(model="meta-llama/Llama-3.2-11B-Vision") # Example model name | |
# Set the correct path to the ChromaDB directory | |
client_db = PersistentClient(path="./chromadb_directory/chromadb_file") | |
# Load your collection | |
collection = client_db.get_collection("my_collection") | |
# Function to retrieve documents from ChromaDB, ensuring results are strings | |
def retrieve_from_chromadb(query): | |
results = collection.query(query_texts=query, n_results=5) # Adjust n_results as needed | |
# Ensure each document is a string | |
documents = [str(doc) for doc in results['documents']] | |
return documents | |
# Respond function for the chatbot | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Prepare messages for the model | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Retrieve relevant documents from ChromaDB | |
retrieved_docs = retrieve_from_chromadb(message) | |
# Join the documents to create a context for the user query | |
context = "\n".join(retrieved_docs) + "\nUser: " + message | |
messages.append({"role": "user", "content": context}) | |
response = "" | |
# Generate response using the Inference Client | |
for message in inference_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |