import gradio as gr from huggingface_hub import InferenceClient import chromadb from chromadb.config import Settings # Initialize ChromaDB client client_db = chromadb.Client(Settings(chroma_db_impl="duckdb+parquet", persist_directory="chromadb_directory")) # Adjusted path # Load your collection collection = client_db.get_collection("my_collection") # Initialize the Hugging Face Inference Client inference_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def retrieve_from_chromadb(query): results = collection.query(query=query, n_results=5) # Adjust n_results as needed return results['documents'] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare messages for the model messages = [{"role": "system", "content": system_message}] # Add conversation history for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Retrieve relevant documents from ChromaDB retrieved_docs = retrieve_from_chromadb(message) context = "\n".join(retrieved_docs) + "\nUser: " + message messages.append({"role": "user", "content": context}) response = "" # Generate response using the Inference Client for message in inference_client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()