MMLU-by-task-Leaderboard / result_data_processor.py
Corey Morris
Catching exceptions in processing files. As new data is introduced, I want to know which files may have different formats and cause problems, but the application shouldn't halt if it can't process a single file
68bce52
raw
history blame
6.5 kB
import pandas as pd
import os
import fnmatch
import json
import re
import numpy as np
class ResultDataProcessor:
def __init__(self, directory='results', pattern='results*.json'):
self.directory = directory
self.pattern = pattern
self.data = self.process_data()
self.ranked_data = self.rank_data()
def _find_files(self, directory='results', pattern='results*.json'):
matching_files = {}
for root, dirs, files in os.walk(directory):
for basename in files:
if fnmatch.fnmatch(basename, pattern):
filename = os.path.join(root, basename)
matching_files[root] = filename
# TODO decide on removing this since I am catching the error when processing the file
matching_files = {key: value for key, value in matching_files.items() if 'gpt-j-6b' not in key}
matching_files = list(matching_files.values())
return matching_files
def _read_and_transform_data(self, filename):
with open(filename) as f:
data = json.load(f)
df = pd.DataFrame(data['results']).T
return df
def _cleanup_dataframe(self, df, model_name):
df = df.rename(columns={'acc': model_name})
df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
.str.replace('harness\|', '', regex=True)
.str.replace('\|5', '', regex=True))
return df[[model_name]]
def _extract_mc1(self, df, model_name):
df = df.rename(columns={'mc1': model_name})
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
# just return the harness|truthfulqa:mc1 row
df = df.loc[['harness|truthfulqa:mc1']]
return df[[model_name]]
def _extract_mc2(self, df, model_name):
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
df = df.rename(columns={'mc2': model_name})
df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
df = df.loc[['harness|truthfulqa:mc2']]
return df[[model_name]]
# remove extreme outliers from column harness|truthfulqa:mc1
def _remove_mc1_outliers(self, df):
mc1 = df['harness|truthfulqa:mc1']
# Identify the outliers
# outliers_condition = mc1 > mc1.quantile(.95)
outliers_condition = mc1 == 1.0
# Replace the outliers with NaN
df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
return df
@staticmethod
def _extract_parameters(model_name):
"""
Function to extract parameters from model name.
It handles names with 'b/B' for billions and 'm/M' for millions.
"""
# pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
match = pattern.search(model_name)
if match:
num, magnitude = match.groups()
num = float(num)
# convert millions to billions
if magnitude.lower() == 'm':
num /= 1000
return num
# return NaN if no match
return np.nan
def process_data(self):
dataframes = []
organization_names = []
for filename in self._find_files(self.directory, self.pattern):
try:
raw_data = self._read_and_transform_data(filename)
split_path = filename.split('/')
model_name = split_path[2]
organization_name = split_path[1]
cleaned_data = self._cleanup_dataframe(raw_data, model_name)
mc1 = self._extract_mc1(raw_data, model_name)
mc2 = self._extract_mc2(raw_data, model_name)
cleaned_data = pd.concat([cleaned_data, mc1])
cleaned_data = pd.concat([cleaned_data, mc2])
organization_names.append(organization_name)
dataframes.append(cleaned_data)
except Exception as e:
print(f'Error processing {filename}')
print("The error is: ", e)
continue
data = pd.concat(dataframes, axis=1).transpose()
# Add organization column
data['organization'] = organization_names
# Add Model Name and rearrange columns
data['Model Name'] = data.index
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
# Remove the 'Model Name' column
data = data.drop(columns=['Model Name'])
# Add average column
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
# Reorder columns to move 'MMLU_average' to the third position
cols = data.columns.tolist()
cols = cols[:2] + cols[-1:] + cols[2:-1]
data = data[cols]
# Drop specific columns
data = data.drop(columns=['all', 'truthfulqa:mc|0'])
# Add parameter count column using extract_parameters function
data['Parameters'] = data.index.to_series().apply(self._extract_parameters)
# move the parameters column to the front of the dataframe
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
# remove extreme outliers from column harness|truthfulqa:mc1
data = self._remove_mc1_outliers(data)
data = self.manual_removal_of_models(data)
return data
def manual_removal_of_models(self, df):
# remove models verified to be trained on evaluation data
# load the list of models
with open('contaminated_models.txt') as f:
contaminated_models = f.read().splitlines()
# remove the models from the dataframe
df = df[~df.index.isin(contaminated_models)]
return df
def rank_data(self):
# add rank for each column to the dataframe
# copy the data dataframe to avoid modifying the original dataframe
rank_data = self.data.copy()
for col in list(rank_data.columns):
rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')
return rank_data
def get_data(self, selected_models):
return self.data[self.data.index.isin(selected_models)]