Corey Morris
Rename
e854cb9
raw
history blame
5.63 kB
import streamlit as st
import pandas as pd
import os
import fnmatch
import json
import plotly.express as px
class MultiURLData:
def __init__(self):
self.data = self.process_data()
def process_data(self):
dataframes = []
def find_files(directory, pattern):
for root, dirs, files in os.walk(directory):
for basename in files:
if fnmatch.fnmatch(basename, pattern):
filename = os.path.join(root, basename)
yield filename
for filename in find_files('results', 'results*.json'):
model_name = filename.split('/')[2]
with open(filename) as f:
data = json.load(f)
df = pd.DataFrame(data['results']).T
# data cleanup
df = df.rename(columns={'acc': model_name})
# Replace 'hendrycksTest-' with a more descriptive column name
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
df.index = df.index.str.replace('harness\|', '', regex=True)
# remove |5 from the index
df.index = df.index.str.replace('\|5', '', regex=True)
dataframes.append(df[[model_name]])
data = pd.concat(dataframes, axis=1)
data = data.transpose()
data['Model Name'] = data.index
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
# remove the Model Name column
data = data.drop(['Model Name'], axis=1)
# create a new column that averages the results from each of the columns with a name that start with MMLU
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
# move the MMLU_average column to the third column in the dataframe
cols = data.columns.tolist()
cols = cols[:2] + cols[-1:] + cols[2:-1]
data = data[cols]
# # move the MMLU_average column to the the second column in the dataframe
# cols = data.columns.tolist()
# cols = cols[:1] + cols[-1:] + cols[1:-1]
# data = data[cols]
# data
return data
# filter data based on the index
def get_data(self, selected_models):
filtered_data = self.data[self.data.index.isin(selected_models)]
return filtered_data
data_provider = MultiURLData()
st.title('Model Evaluation Results including MMLU by task')
filters = st.checkbox('Select Models and Evaluations')
# Create defaults for selected columns and models
selected_columns = data_provider.data.columns.tolist()
selected_models = data_provider.data.index.tolist()
if filters:
# Create checkboxes for each column
selected_columns = st.multiselect(
'Select Columns',
data_provider.data.columns.tolist(),
default=selected_columns
)
selected_models = st.multiselect(
'Select Models',
data_provider.data.index.tolist(),
default=selected_models
)
# Get the filtered data and display it in a table
st.header('Sortable table')
filtered_data = data_provider.get_data(selected_models)
# sort the table by the MMLU_average column
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False)
st.dataframe(filtered_data[selected_columns])
# The rest of your plotting code...
def create_plot(df, arc_column, moral_column, models=None):
if models is not None:
df = df[df.index.isin(models)]
plot_data = pd.DataFrame({
'Model': df.index,
arc_column: df[arc_column],
moral_column: df[moral_column],
})
plot_data['color'] = 'purple'
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols")
fig.update_layout(showlegend=False,
xaxis_title=arc_column,
yaxis_title=moral_column,
xaxis = dict(),
yaxis = dict())
return fig
st.header('Overall benchmark comparison')
st.header('Custom scatter plots')
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1)
if selected_x_column != selected_y_column: # Avoid creating a plot with the same column on both axes
fig = create_plot(filtered_data, selected_x_column, selected_y_column)
st.plotly_chart(fig)
else:
st.write("Please select different columns for the x and y axes.")
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10')
st.plotly_chart(fig)
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_average')
st.plotly_chart(fig)
fig = create_plot(filtered_data, 'hellaswag|10', 'MMLU_average')
st.plotly_chart(fig)
st.header('Top 50 models on MMLU_average')
top_50 = filtered_data.nlargest(50, 'MMLU_average')
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average')
st.plotly_chart(fig)
st.header('Moral Scenarios')
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios')
st.plotly_chart(fig)
fig = create_plot(filtered_data, 'MMLU_moral_disputes', 'MMLU_moral_scenarios')
st.plotly_chart(fig)
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
st.plotly_chart(fig)
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
st.plotly_chart(fig)
fig = px.histogram(filtered_data, x="MMLU_moral_disputes", marginal="rug", hover_data=filtered_data.columns)
st.plotly_chart(fig)