Corey Morris
commited on
Commit
·
ee9e25e
1
Parent(s):
9f7d306
Added basic structure of details data processing and testing. For downloading huggingface details dataset files
Browse files- details_data_processor.py +155 -0
- test_details_data_processing.py +18 -0
details_data_processor.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
import fnmatch
|
4 |
+
import json
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
class DetailsDataProcessor:
|
9 |
+
|
10 |
+
def __init__(self, directory='results', pattern='results*.json'):
|
11 |
+
self.directory = directory
|
12 |
+
self.pattern = pattern
|
13 |
+
# self.data = self.process_data()
|
14 |
+
# self.ranked_data = self.rank_data()
|
15 |
+
|
16 |
+
# @staticmethod
|
17 |
+
# def _find_files(directory, pattern):
|
18 |
+
# for root, dirs, files in os.walk(directory):
|
19 |
+
# for basename in files:
|
20 |
+
# if fnmatch.fnmatch(basename, pattern):
|
21 |
+
# filename = os.path.join(root, basename)
|
22 |
+
# yield filename
|
23 |
+
|
24 |
+
# def _read_and_transform_data(self, filename):
|
25 |
+
# with open(filename) as f:
|
26 |
+
# data = json.load(f)
|
27 |
+
# df = pd.DataFrame(data['results']).T
|
28 |
+
# return df
|
29 |
+
|
30 |
+
# def _cleanup_dataframe(self, df, model_name):
|
31 |
+
# df = df.rename(columns={'acc': model_name})
|
32 |
+
# df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
33 |
+
# .str.replace('harness\|', '', regex=True)
|
34 |
+
# .str.replace('\|5', '', regex=True))
|
35 |
+
# return df[[model_name]]
|
36 |
+
|
37 |
+
# def _extract_mc1(self, df, model_name):
|
38 |
+
# df = df.rename(columns={'mc1': model_name})
|
39 |
+
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
|
40 |
+
# df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
|
41 |
+
# # just return the harness|truthfulqa:mc1 row
|
42 |
+
# df = df.loc[['harness|truthfulqa:mc1']]
|
43 |
+
# return df[[model_name]]
|
44 |
+
|
45 |
+
# def _extract_mc2(self, df, model_name):
|
46 |
+
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
|
47 |
+
# df = df.rename(columns={'mc2': model_name})
|
48 |
+
# df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
|
49 |
+
# df = df.loc[['harness|truthfulqa:mc2']]
|
50 |
+
# return df[[model_name]]
|
51 |
+
|
52 |
+
# # remove extreme outliers from column harness|truthfulqa:mc1
|
53 |
+
# def _remove_mc1_outliers(self, df):
|
54 |
+
# mc1 = df['harness|truthfulqa:mc1']
|
55 |
+
# # Identify the outliers
|
56 |
+
# # outliers_condition = mc1 > mc1.quantile(.95)
|
57 |
+
# outliers_condition = mc1 == 1.0
|
58 |
+
# # Replace the outliers with NaN
|
59 |
+
# df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
|
60 |
+
# return df
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
# @staticmethod
|
65 |
+
# def _extract_parameters(model_name):
|
66 |
+
# """
|
67 |
+
# Function to extract parameters from model name.
|
68 |
+
# It handles names with 'b/B' for billions and 'm/M' for millions.
|
69 |
+
# """
|
70 |
+
# # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
|
71 |
+
# pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
|
72 |
+
|
73 |
+
# match = pattern.search(model_name)
|
74 |
+
|
75 |
+
# if match:
|
76 |
+
# num, magnitude = match.groups()
|
77 |
+
# num = float(num)
|
78 |
+
|
79 |
+
# # convert millions to billions
|
80 |
+
# if magnitude.lower() == 'm':
|
81 |
+
# num /= 1000
|
82 |
+
|
83 |
+
# return num
|
84 |
+
|
85 |
+
# # return NaN if no match
|
86 |
+
# return np.nan
|
87 |
+
|
88 |
+
|
89 |
+
# def process_data(self):
|
90 |
+
|
91 |
+
# dataframes = []
|
92 |
+
# organization_names = []
|
93 |
+
# for filename in self._find_files(self.directory, self.pattern):
|
94 |
+
# raw_data = self._read_and_transform_data(filename)
|
95 |
+
# split_path = filename.split('/')
|
96 |
+
# model_name = split_path[2]
|
97 |
+
# organization_name = split_path[1]
|
98 |
+
# cleaned_data = self._cleanup_dataframe(raw_data, model_name)
|
99 |
+
# mc1 = self._extract_mc1(raw_data, model_name)
|
100 |
+
# mc2 = self._extract_mc2(raw_data, model_name)
|
101 |
+
# cleaned_data = pd.concat([cleaned_data, mc1])
|
102 |
+
# cleaned_data = pd.concat([cleaned_data, mc2])
|
103 |
+
# organization_names.append(organization_name)
|
104 |
+
# dataframes.append(cleaned_data)
|
105 |
+
|
106 |
+
|
107 |
+
# data = pd.concat(dataframes, axis=1).transpose()
|
108 |
+
|
109 |
+
# # Add organization column
|
110 |
+
# data['organization'] = organization_names
|
111 |
+
|
112 |
+
# # Add Model Name and rearrange columns
|
113 |
+
# data['Model Name'] = data.index
|
114 |
+
# cols = data.columns.tolist()
|
115 |
+
# cols = cols[-1:] + cols[:-1]
|
116 |
+
# data = data[cols]
|
117 |
+
|
118 |
+
# # Remove the 'Model Name' column
|
119 |
+
# data = data.drop(columns=['Model Name'])
|
120 |
+
|
121 |
+
# # Add average column
|
122 |
+
# data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
123 |
+
|
124 |
+
# # Reorder columns to move 'MMLU_average' to the third position
|
125 |
+
# cols = data.columns.tolist()
|
126 |
+
# cols = cols[:2] + cols[-1:] + cols[2:-1]
|
127 |
+
# data = data[cols]
|
128 |
+
|
129 |
+
# # Drop specific columns
|
130 |
+
# data = data.drop(columns=['all', 'truthfulqa:mc|0'])
|
131 |
+
|
132 |
+
# # Add parameter count column using extract_parameters function
|
133 |
+
# data['Parameters'] = data.index.to_series().apply(self._extract_parameters)
|
134 |
+
|
135 |
+
# # move the parameters column to the front of the dataframe
|
136 |
+
# cols = data.columns.tolist()
|
137 |
+
# cols = cols[-1:] + cols[:-1]
|
138 |
+
# data = data[cols]
|
139 |
+
|
140 |
+
# # remove extreme outliers from column harness|truthfulqa:mc1
|
141 |
+
# data = self._remove_mc1_outliers(data)
|
142 |
+
|
143 |
+
# return data
|
144 |
+
|
145 |
+
# def rank_data(self):
|
146 |
+
# # add rank for each column to the dataframe
|
147 |
+
# # copy the data dataframe to avoid modifying the original dataframe
|
148 |
+
# rank_data = self.data.copy()
|
149 |
+
# for col in list(rank_data.columns):
|
150 |
+
# rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')
|
151 |
+
|
152 |
+
# return rank_data
|
153 |
+
|
154 |
+
# def get_data(self, selected_models):
|
155 |
+
# return self.data[self.data.index.isin(selected_models)]
|
test_details_data_processing.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from details_data_processor import DetailsDataProcessor
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
class TestDetailsDataProcessor(unittest.TestCase):
|
6 |
+
|
7 |
+
def setUp(self):
|
8 |
+
self.processor = DetailsDataProcessor()
|
9 |
+
|
10 |
+
# check that the result is a pandas dataframe
|
11 |
+
def test_process_data(self):
|
12 |
+
pass
|
13 |
+
# data = self.processor.data
|
14 |
+
# self.assertIsInstance(data, pd.DataFrame)
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == '__main__':
|
18 |
+
unittest.main()
|