import unittest from result_data_processor import ResultDataProcessor import pandas as pd class TestResultDataProcessor(unittest.TestCase): def setUp(self): self.processor = ResultDataProcessor() # check that the result is a pandas dataframe def test_process_data(self): data = self.processor.data self.assertIsInstance(data, pd.DataFrame) # check that pandas dataframe has the right columns def test_columns(self): data = self.processor.data self.assertIn('Parameters', data.columns) self.assertIn('MMLU_average', data.columns) # check number of columns self.assertEqual(len(data.columns), 64) # check that the number of rows is correct def test_rows(self): data = self.processor.data self.assertEqual(len(data), 998) # check that mc1 column exists def test_mc1(self): data = self.processor.data self.assertIn('harness|truthfulqa:mc1', data.columns) # test that a column that contains truthfulqa:mc does not exist def test_truthfulqa_mc(self): data = self.processor.data self.assertNotIn('truthfulqa:mc', data.columns) # check for extreme outliers in mc1 column def test_mc1_outliers(self): data = self.processor.data mc1 = data['harness|truthfulqa:mc1'] self.assertLess(mc1.max(), 1.0) self.assertGreater(mc1.min(), 0.0) # test that a column named organization exists def test_organization(self): data = self.processor.data self.assertIn('organization', data.columns) if __name__ == '__main__': unittest.main()